Skip Nav Destination
Close Modal
Search Results for
failure investigations
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1020 Search Results for
failure investigations
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001707
EISBN: 978-1-62708-217-4
... Abstract The failures of two aircraft components, one from a landing gear and the other from an ejector rack mechanism, were investigated. Both were made from PH 13-8 Mo (UNS S13800) precipitation-hardening stainless steel which had been heat treated to the H1000 and H950 tempers respectively...
Abstract
The failures of two aircraft components, one from a landing gear and the other from an ejector rack mechanism, were investigated. Both were made from PH 13-8 Mo (UNS S13800) precipitation-hardening stainless steel which had been heat treated to the H1000 and H950 tempers respectively and then chromium plated. The parts were characterized metallographically and mechanically and were found to be compliant. Detailed fractographic examination revealed that the first stage of both failures was similar: subsurface initiation of numerous cracks with a wide range of orientations and cleavage like features. The cracking was followed by fatigue in one case and catastrophic failure in the other. Hydrogen embrittlement was identified as the most likely mechanism of failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003519
EISBN: 978-1-62708-180-1
... Abstract This article reviews the most common reasons for failures and the purpose of a failure investigation. It discusses the nine steps for the organization of a good failure investigation. The three basic tools that are helpful in any failure investigation, namely, a fault tree, a failure...
Abstract
This article reviews the most common reasons for failures and the purpose of a failure investigation. It discusses the nine steps for the organization of a good failure investigation. The three basic tools that are helpful in any failure investigation, namely, a fault tree, a failure mode assessment chart, and a technical plan for resolution chart, are reviewed. The article briefly describes failure investigation pitfalls and concludes with information on the other common tools used for failure investigation and root cause determination.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006755
EISBN: 978-1-62708-295-2
... Abstract This article discusses the organization required at the outset of a failure investigation and provides a methodology with some organizational tools. It focuses on the use of problem-solving tools such as a fault tree analysis combined with critical thinking. The discussion covers nine...
Abstract
This article discusses the organization required at the outset of a failure investigation and provides a methodology with some organizational tools. It focuses on the use of problem-solving tools such as a fault tree analysis combined with critical thinking. The discussion covers nine steps to organize a good failure investigation. They are as follows: understand and negotiate goals of the investigation, obtain a clear understanding of the failure, identify all possible root causes, objectively evaluate the likelihood of each root cause, converge on the most likely root cause(s), objectively and clearly identify all possible corrective actions, objectively evaluate each corrective action, select optimal corrective action(s), and evaluate effectiveness of selected corrective action(s). Common problems detrimental to a failure investigation are also covered.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001835
EISBN: 978-1-62708-241-9
... Abstract Wind turbine blades are secured by a number of high-strength bolts. The failure of one such bolt, which caused a turbine blade to detach, was investigated to determine why it fractured. Based on the results of a detailed analysis, consisting of stress calculations, chemical composition testing...
Abstract
Wind turbine blades are secured by a number of high-strength bolts. The failure of one such bolt, which caused a turbine blade to detach, was investigated to determine why it fractured. Based on the results of a detailed analysis, consisting of stress calculations, chemical composition testing, metallurgical examination, mechanical property testing, and fractographic analysis, it was determined that the bolt failed by fatigue accelerated by stress concentration at low temperatures. The investigation also provided suggestions for avoiding similar failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001669
EISBN: 978-1-62708-229-7
... Abstract As the result of a leak detected in a plate-formed header at PENELEC'S Shawville Unit No. 3, an extensive failure investigation was initiated to determine the origin of cracking visible along the longitudinal weld seam. Fabricated from SA387-D material and designed for a superheater...
Abstract
As the result of a leak detected in a plate-formed header at PENELEC'S Shawville Unit No. 3, an extensive failure investigation was initiated to determine the origin of cracking visible along the longitudinal weld seam. Fabricated from SA387-D material and designed for a superheater outlet temperature of 566 deg C, the 11.4 cm thick header had operated for approximately 187,000 h at the time of the failure. Discussion focuses on the results of a metallographic examination of boat samples removed from the longitudinal seam weldment in the vicinity of the failure and at other areas of the header where peak temperatures were believed to have been reached. The long-term mechanical properties of the service-exposed base metal and creep-damaged weld metal were determined by creep testing. Based on the utility's decision to replace the header within one to three years, an isostress overtemperature lead specimen approach was taken, whereby failure of a test specimen in the laboratory would precede failures in the plant. These tests revealed approximately a 2:1 difference in life for the base metal as compared to weld metal.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001846
EISBN: 978-1-62708-241-9
... between two journals of different cross-sectional area. The dominant failure mechanism was low-cycle rotation-bending fatigue. The bearing sleeve failed as a result of abrasive and adhesive wear. Detailed metallurgical analysis indicated that the sleeve and its respective journal had been subjected...
Abstract
The main shaft in a locomotive turbocharger fractured along with an associated bearing sleeve. Visual and fractographic examination revealed that the shaft fractured at a sharp-edged groove between two journals of different cross-sectional area. The dominant failure mechanism was low-cycle rotation-bending fatigue. The bearing sleeve failed as a result of abrasive and adhesive wear. Detailed metallurgical analysis indicated that the sleeve and its respective journal had been subjected to abnormally high temperatures, increasing the amount of friction between the sleeve, bearing bush, and journal surface. The excessive heat also softened the induction-hardened case on the journal surface, decreasing its fatigue strength. Fatigue crack initiation occurred at the root fillet of the groove because of stress concentration.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001706
EISBN: 978-1-62708-217-4
... Abstract The truck beam of the left main landing gear (MGL) of a Boeing 707 airplane collapsed on the ground just after the aircraft was unloaded and refueled. The investigation revealed that failure was caused by the propagation of an intergranular crack originating from the bottom of the pit...
Abstract
The truck beam of the left main landing gear (MGL) of a Boeing 707 airplane collapsed on the ground just after the aircraft was unloaded and refueled. The investigation revealed that failure was caused by the propagation of an intergranular crack originating from the bottom of the pit. The crack reached the critical size and caused failure by stress-corrosion cracking (SCC) under static loading conditions in service. The failed beam was protected by a well adhering paint system. However, the presence of adequate amounts of corrosion preventive compound films (CPC) on the surfaces of the failed beam could not be conclusively established because of the long term service exposure and presence of lubricants.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
... investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples...
Abstract
This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... Abstract Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006762
EISBN: 978-1-62708-295-2
... Abstract As a failure investigation progresses, the time arrives when the data and results of the various testing and analyses are compiled, compared, and interpreted. Data interpretation should be relatively straightforward for results that align well. However, interpretation can...
Abstract
As a failure investigation progresses, the time arrives when the data and results of the various testing and analyses are compiled, compared, and interpreted. Data interpretation should be relatively straightforward for results that align well. However, interpretation can be challenging when results from various tests seem contradictory or inconclusive. Regardless, conclusions must eventually be drawn from the data. This article discusses the processes involved in reviewing data, formulating conclusions, failure analysis report preparation and writing, and providing recommendations and follow-up with appropriate personnel to prevent future failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... Abstract This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also...
Abstract
This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also reviewed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... Abstract Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... Abstract This article describes the two critical goals in a failure investigation: damage mechanisms and damage modes. It explains the determination of primary and secondary damage mechanisms and discusses the methodology used to classify the damage mechanisms. damage damage modes...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006815
EISBN: 978-1-62708-329-4
..., organizational factors, and (perhaps) additional physical factors. The engineering design process is significant in root-cause failure analysis because it contains the original contributing factors that led to the design that was produced and failed. By investigating not only the failed component or system...
Abstract
The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause of failure. Next, the article discusses the steps involved in the engineering design process and explains the importance of considering the engineering design process. Information on failure modes and effects analysis is also provided. The article ends with a discussion on the consequence of management actions on failures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001754
EISBN: 978-1-62708-241-9
... online) Fig. 12 Representative EDS qualitative chemical analysis of the fragments shown in Fig. 11 Abstract The case study presented in this article details the failure investigation of an M50 alloy steel bearing used in a jet engine gearbox drive assembly. It discusses...
Abstract
The case study presented in this article details the failure investigation of an M50 alloy steel bearing used in a jet engine gearbox drive assembly. It discusses the investigative steps and analytic tools used to determine the root cause, highlighting the importance of continuous, thorough questioning by the investigating activity. The combined analyses demonstrated that the bearing failed by a single event overload as evidenced by bulk deformation and traces of foreign material on the rolling elements. The anomalous transferred metal found on the rolling elements subsequently led to the discovery of overlooked debris in an engine chip detector, and thus resulted in a review of several maintenance practices.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001143
EISBN: 978-1-62708-229-7
... investigation. The discussion centers around the question of how to determine whether the failure was a fatigue induced failure, occurring in accordance with normal life cycle estimates, or whether outside influences could have initiated or hastened the failure. Turbine blades Turbine blade steel...
Abstract
The assignment of financial liability for turbine blade failures in steam turbines rests on the ability to determine the damage mechanism or mechanisms responsible for the failure. A discussion is presented outlining various items to look for in a post-turbine blade failure investigation. The discussion centers around the question of how to determine whether the failure was a fatigue induced failure, occurring in accordance with normal life cycle estimates, or whether outside influences could have initiated or hastened the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... Abstract The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had...
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001817
EISBN: 978-1-62708-241-9
... tension Abstract A wire hoisting rope on a drilling rig failed during a lift, after a few cycles of operation, causing extensive damage to support structures. The failure investigation that followed included mechanical property testing and chemical, metallurgical, and finite element analysis...
Abstract
A wire hoisting rope on a drilling rig failed during a lift, after a few cycles of operation, causing extensive damage to support structures. The failure investigation that followed included mechanical property testing and chemical, metallurgical, and finite element analysis. The rope was made from multiple strands of 1095 steel wire. Its chemical composition, ferrite-pearlite structure, and high hardness indicate that the wire is a type of extra improved plow steel (EEIPS grade). The morphologies of the fracture surfaces suggest that the wires were subjected to tensile overloading. This was confirmed by finite element analysis, which also revealed compressive contact stresses between the wires and between the rope and sheave surface. Based on the results, it was concluded that a tensile overload, due to the combined effect of a sudden load and undersized sheave, is what ultimately caused the rope to fail.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001575
EISBN: 978-1-62708-217-4
..., however, because the bushing had only a few microns of clearance. The effect caused the oil to squeeze out, resulting in metal-to-metal contact, and ultimately failure. Aircraft components Gear boxes Oil pumps Overheating Thermal stresses 32CrMoV 13 (Other, miscellaneous, or unspecified...
Abstract
An oil scavenge pump was found to have failed when a protective shear neck fractured during the start of a jet engine. Visual inspection revealed that the driven gear in one of the bearing compartments was frozen as was the corresponding drive gear. Spacer wear and thermal discoloration (particularly on the driven gear) were also observed. The gears were made from 32Cr-Mo-V13 steel, hardened and nitrided to 750 to 950 HV. Micrographic inspection of the gear teeth revealed microstructural changes that, in context, appear to be the result of friction heating. The spacers consist of Cu alloy (AMS4845) bushings force fit into AA2024-T3 Al alloy spacing elements. It was found that uncontrolled fit interference between the two components had led to Cu alloy overstress. Thermal cycling under operating conditions yielded the material. The dilation was directed inward to the shaft, however, because the bushing had only a few microns of clearance. The effect caused the oil to squeeze out, resulting in metal-to-metal contact, and ultimately failure.