Skip Nav Destination
Close Modal
Search Results for
face-centered cubic
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 52 Search Results for
face-centered cubic
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2019
Fig. 6 The microstructure of the tube, consisting of a face-centered cubic (fcc) nickel matrix and fine precipitates along some grain boundaries
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001033
EISBN: 978-1-62708-214-3
... materials revealed that two phases were present in each: face-centered cubic (fcc) ( a = 0.3607 nm) and body-centered cubic (bcc) ( a = 0.287nm). The debris found between the screens consisted of pieces of screen ( Fig. 8a and b ). Fragments of wire smaller than 20 µm (800 µin.) ( Fig. 8c ) passed...
Abstract
An investigation of a Stirling engine after an aborted test run revealed that the regenerator screens had suffered substantial damage. During the run, the individual screens oscillated as the helium working fluid was shuttled through the regenerator. In localized areas, the 41 mu m (1600 mu in.) diam type 304 stainless steel wire screening had been torn and pieces were missing. Scanning electron microscope revealed that the fracture had occurred at wire crossover locations by a fatigue mechanism. The problem was solved by sintering the individual screens into a single unit.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001775
EISBN: 978-1-62708-241-9
... presence of sulfur in comparison to Fig. 11 . Fig. 4 Branching of one of the main cracks on the gas-side surface of the tube Fig. 5 A shorter parallel crack between the two main cracks Fig. 6 The microstructure of the tube, consisting of a face-centered cubic (fcc) nickel...
Abstract
A bent Ni-Cu Monel 400 alloy tube, which operated as part of a pipeline in a petrochemical distillery, failed by through-thickness cracking. The pipeline was used to carry a stream of gaseous hydrocarbons containing hydrochloric acid (HCl) into a reaction tower. The tower provided a caustic solution (NaOH) to remove HCl from the stream, before the latter was directed to a burner. Metallographic examination showed that the cracks were intergranular and were frequently branched. Although nominal chemical composition of the component was found within the specified range, energy dispersive x-ray analysis (EDXA) indicated significant segregation of sulfur and chlorine along the grain boundaries. Failure was attributed to hypochlorous-acid (HClO)-induced stress-corrosion cracking (SCC). The HClO was formed by the reaction of HCl with atmospheric O 2 that entered the tube during shutdowns and startups. Residual stresses, originating from in situ bend forming of the tube during assembly of the line, provided a driving force for crack growth, and the segregation of sulfur on grain boundaries made the material more susceptible to cracking.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... appearance transition tempera- ture fcc face-centered cubic FCAW flux cored arc welding FDA Food and Drug Administration FEA finite element analysis FFS fit for service FHA fault hazard analysis Fig. figure FMEA failure modes and effects analysis FMECA failure modes, effects, and criticality analysis FRP...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
... parallel to the {111} planes of the face-centered cubic γ phase, some of which may be retained [ 12 ]. The example in Fig. 7 clearly shows that these regions are parallel to the ε plates. Fig. 4 Micrograph showing grain boundaries and grain boundary attack. Fig. 5 Micrograph showing...
Abstract
A microstructural analysis has been made of a burner nozzle removed from service in a coal gasification plant. The nozzle was a casting of a Co-29wt%Cr-19wt%Fe alloy. Extensive hot corrosion had occurred on the surface. There was penetration along grain boundaries, and corrosion products in these regions were particularly rich in S, and also contained Al, Si, O, and Cl. The grain boundaries contained Cr-rich particles which were probably Cr23-C6 type carbides. In the matrix, corrosion occurred between the Widmanstatten plates. Particles were found between these plates, most of which were rich in Cr and O, and probably were Cr2-O3 oxides. Other matrix particles were found which were rich in Al, O, and S. The corrosion was related to these grain boundary and matrix particles, which either produced a Cr-depleted zone around them or were themselves attacked.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
.... Fig. 1 Embrittlement and nonembrittlement couples in solid/liquid systems. hcp, hexagonal close-packed; bcc, body-centered cubic; fcc, face-centered cubic. Source: Ref 5 Metals that have been shown to cause liquid-metal-induced embrittlement, solid-metal-induced embrittlement, or both...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
..., as in the case of face-centered cubic (fcc) metals, the crack will propagate only when the liquid metal feeds the crack. In a notch-sensitive metal—for example, in a body-centered cubic (bcc) metal, such as iron—the nucleated crack may become unstable and propagate ahead of the liquid metal. In cases of LME...
Abstract
This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results of various axle studies, with illustrations and concludes with information on the simulation of the LME mechanism.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... bands, some of which develop into cracks with continued cycling. Use of coarse-grained structures causes strain homogenization and therefore IG fatigue cracking ( Ref 15 ). Cyclic deformation of face-centered cubic metals, even at low plastic strain amplitudes, leads to IG cracks from the action...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... the origin. The crack path in both SMIE and LMIE is characteristic of the particular structural metal and embrittler but is usually intergranular, especially for body-centered cubic and face-centered cubic alloys. Secondary cracks and crack branching are often observed, and, in LMIE, these cracks...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
..., specifically oriented grains tend to crack, leaving a shiny, faceted appearance easily differentiated from dull and fibrous, dimple-rupture features. Cleavage in a steel sample is shown in Fig. 4 . Face-centered-cubic (fcc) metals (for example, copper, aluminum, nickel, and austenitic steels) exhibit...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... in Fig. 4 . Face-centered-cubic (fcc) metals (for example, copper, aluminum, nickel, and austenitic steels) exhibit the greatest ductility during rapid fracture and, in benign environments, do not normally fracture via cleavage. However, brittle cracking of fcc metals can occur under conditions...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
..., such as welding. The combined effect of these precipitates results in 475 °C (885 °F) embrittlement. 3 , 4 Sensitization makes ferritic Cr alloys susceptible to intergranular corrosion and stress-corrosion cracking. This effect is similar to what occurs in standard 18Cr-8Ni grades of austenitic, face...
Abstract
Alloy 430 stainless steel tube-to-header welds failed in a heat recovery steam generator (HRSG) within one year of commissioning. The HRSG was in a combined cycle, gas-fired, combustion turbine electric power plant. Alloy 430, a 17% Cr ferritic stainless steel, was selected because of its resistance to chloride and sulfuric acid dewpoint corrosion under conditions potentially present in the HRSG low-pressure feedwater economizer. Intergranular corrosion and cracking were found in the weld metal and heat-affected zones. The hardness in these regions was up to 35 HRC, and the weld had received a postweld heat treatment (PWHT). Metallographic examination revealed that the corroded areas contained undertempered martensite. Fully tempered weld areas with a hardness of 93 HRB were not attacked. No evidence of corrosion fatigue was found. Uneven temperature control during PWHT was the most likely cause of failure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... markings that the dark region was the location of some material imperfection that initiated fracture. Typically, it is common for fracture initiation to occur within a relatively small region, where the center of the radial-fan markings provides a strong indication of the crack initiation region...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... metals, most of the applied plastic strain is concentrated in a few persistent slip bands, some of which develop into cracks with continued cycling. Use of coarse-grained structures causes strain homogenization and, therefore, IG fatigue cracking ( Ref 11 ). Cyclic deformation of face-centered cubic (fcc...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
..., body-centered cubic; fcc, face-centered cubic; T , instantaneous absolute temperature; T M , absolute melting temperature of the material As shown in Fig. 5 , the flow strength, fracture strength, and elastic modulus of a material generally decrease as temperature increases. If a structure...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
..., body-centered cubic; fcc, face-centered cubic; T , instantaneous absolute temperature; T M , absolute melting temperature of the material As shown in Fig. 5 , the flow strength, fracture strength, and elastic modulus of a material generally decrease as temperature increases. If a structure...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... also be elongated or equiaxed. These cases are discussed in more detail following a discussion of the effects of deformation twinning on cracking mechanisms and fracture-surface morphology. Face-centered cubic (fcc) materials generally do not cleave, as indicated in the article “Fracture Appearance...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... are discussed in more detail following a discussion of the effects of deformation twinning on cracking mechanisms and fracture surface morphology. The face-centered cubic (fcc) materials do not generally cleave, as indicated in the preceding article in this Volume, “Fracture Appearance and Mechanisms...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... mechanisms of cavitation failure are considered: those for ductile materials and those for brittle materials. Ductile Failure Mechanism Ductile failure mechanism is observed for most engineering metallic materials that are not very sensitive to strain rate ( Fig. 2 ). Metals with a face-centered cubic...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
1