Skip Nav Destination
Close Modal
Search Results for
fabrication characteristics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 218 Search Results for
fabrication characteristics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001567
EISBN: 978-1-62708-230-3
... Abstract A falling film black liquor evaporator consisted of flat twin plate heat exchangers and was used to increase black liquor solids content prior to its burning in the recovery boiler. Several plate heat exchangers were fabricated of AISI type 316L stainless steel by electric resistance...
Abstract
A falling film black liquor evaporator consisted of flat twin plate heat exchangers and was used to increase black liquor solids content prior to its burning in the recovery boiler. Several plate heat exchangers were fabricated of AISI type 316L stainless steel by electric resistance welding. Cracks initiated at the inside surface of the welded areas and penetrated through the wall thickness. In several locations, the weld fractured and the plates separated with significant spring back, indicative of high residual stresses attributed to fabrication and weld procedures. The cracks had extended radially from the electric resistant weld into the base metal. Metallographic examination revealed the cracks were transgranular and branching, characteristic of SCC in austenitic stainless steels. The fracture surfaces had a brittle cleavage-like appearance, typical of SCC in austenitic stainless steels. Chlorides in the service environment were a contributory factor. The primary factor causing SCC localized at the electric resistant welds was substantial residual stresses as a result of fabrication procedures. It was recommended that the heat exchanger plates be subjected to stress-relief heat treatment following fabrication and welding.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047181
EISBN: 978-1-62708-233-4
... Abstract Hydraulic cylinder housings were being fabricated from 4140 grade seamless steel tubing. During production, magnetic-particle inspection indicated the presence of circumferential and longitudinal cracks in a large number of cylinders. Analysis (visual inspection, dye penetrant...
Abstract
Hydraulic cylinder housings were being fabricated from 4140 grade seamless steel tubing. During production, magnetic-particle inspection indicated the presence of circumferential and longitudinal cracks in a large number of cylinders. Analysis (visual inspection, dye penetrant inspection, 50x/90x/400x SEM micrographs, and metallographic analysis) supports the conclusion that the cracking problem in these components was identified as quench cracks due to their brittle, intergranular nature and the characteristic temper oxide on the fracture surfaces. Although the steel met the compositional requirements of SAE 4140, the sulfur level was 0.022% and would account for the formation of the sulfide stringers observed. Apparently, the combination of the clustered, stringer-type inclusions and the quenching conditions were too severe for this component geometry. The result was a high incidence of quench cracks that rendered the parts useless. Recommendations included changing the specification, requiring the steel to have lower sulfur concentrations. Magnetic-particle cleanliness standards should be imposed that will exclude material with harmful clusters of sulfide stringers, for example, modified AMS 2301.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
.... The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused...
Abstract
A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service. The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused failure at this location because the weld was abnormally thin as fabricated. Thus, failure resulted from inadequate deposition of weld metal and subsequent wall thinning from internal corrosion. It was recommended that the cross-tee be replaced with a like component, with more careful attention to weld quality.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts. binder jet sintering directed energy deposition failure analysis metal products metallurgical characteristics powder bed fusion quality assurance ADDITIVE...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006937
EISBN: 978-1-62708-395-9
... irregularity, birefringence, and internal contamination must also be considered. These characteristics are a function of the material and the fabrication method. Gloss and color also are affected by the base material and measured as optical properties. optical components optical properties optical...
Abstract
Optical testing of plastics includes the characterization of materials and the analysis of optical components. If a material is tested for transmission, haze, yellowness, and refractive index, the knowledge of its optical properties is nearly complete. For optical components, surface irregularity, birefringence, and internal contamination must also be considered. These characteristics are a function of the material and the fabrication method. Gloss and color also are affected by the base material and measured as optical properties.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001350
EISBN: 978-1-62708-215-0
... examination showed ratchet marks at the edges of the fracture surface, indicating that loading was of the rotating bending type. Electron fractography using the two-stage replica method revealed striation marks characteristic of fatigue fracture. The striations indicated that the cracks had advanced on many...
Abstract
Upon arrival at the erection site, an AISI type 316L stainless steel tank intended for storage of fast breeder test reactor coolant (liquid sodium) exhibited cracks on its shell at two of four shell/nozzle fillet-welded joint regions. The tank had been transported from the manufacturer to the erection site by road, a distance of about 800 km (500 mi). During transport, the nozzles were kept at an angle of 45 deg to the vertical because of low clearance heights in road tunnels. The two damaged joints were unsupported at their ends inside the vessel, unlike the two uncracked nozzles. Surface examination showed ratchet marks at the edges of the fracture surface, indicating that loading was of the rotating bending type. Electron fractography using the two-stage replica method revealed striation marks characteristic of fatigue fracture. The striations indicated that the cracks had advanced on many “mini-fronts,” also indicative of nonuniform loading such as rotating bending. It was recommended that a support be added at the inside end of the nozzles to rigidly connect with the shell. In addition to avoiding transport problems, this design modification would reduce fatigue loading that occurs in service due to vibration of the nozzles during filling and draining of the tank.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0048674
EISBN: 978-1-62708-222-8
... Abstract Fasteners, made in high-production progressive dies from 0.7 mm thick cold-rolled 1060 steel, were used to secure plastic fabric or webbing to the aluminum framework of outdoor furniture. It was found that approximately 30% of the fasteners cracked and fractured as they were compressed...
Abstract
Fasteners, made in high-production progressive dies from 0.7 mm thick cold-rolled 1060 steel, were used to secure plastic fabric or webbing to the aluminum framework of outdoor furniture. It was found that approximately 30% of the fasteners cracked and fractured as they were compressed to clamp onto the framework prior to springback. The heat treatment cycle of the fasteners consisted of austenitizing, quenching, tempering to obtain a tempered martensite microstructure, acid cleaning, zinc electroplating, coating with a clear dichromate and thereafter baking to remove the nascent hydrogen. It was revealed that fasteners treated in this manner were brittle due to hydrogen embrittlement as the baking process was found to not be able to remove all the nascent hydrogen which had induced during acid cleaning and electroplating. The heat treatment cycle was modified to produce a bainitic structure and the method of plating the fastener with zinc was changed from electroplating to a mechanical deposition process to thus avoid hydrogen embrittlement.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
... their cladding methods into solid state procedures. Explosive cladding/welding is a potential solid state method to fabricate Inconel 625-substrate bimetal plates. The whole procedure of explosive cladding can be summarized in the following steps. As Fig. 1 depicts the parallel setup for explosive cladding...
Abstract
Explosive cladding is a viable method for cladding different materials together, but the complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. To better understand the relationship between impact energy and interfacial shear, investigators conducted an extensive study on the shear strength of explosively cladded Inconel 625 and plain carbon steel samples. They found that by increasing impact energy, the adhesion strength of the resulting cladding can be improved. Beyond a certain point, however, additional impact energy reduces shear strength significantly, causing the cladding process to fail. The findings reveal the decisive role of plastic strain localization and the associated development of microcracks in cladding failures. An attempt is thus made to determine the optimum cladding parameters for the materials of interest.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001289
EISBN: 978-1-62708-215-0
... was attributed to hydrogen embrittlement. Measurement of hydrogen content in the raw material prior to fabrication was recommended. Careful control of acid pickling procedures for descaling of the hot-rolled bars was also deemed necessary. Inclusions Subsurface cracks 38KhA Hydrogen damage...
Abstract
The repeated occurrence of random cracks in the fillet radius portion of low-alloy steel (38KhA) end frame forgings following heat treatment was investigated. Microstructural analyses were carried out on both the failed part and disks of the rolled bar from which the part was made. Subsurface cracks were found to be zigzag and discontinuous as well as intergranular in nature. A mixed mode of fracture involving ductile and brittle flat facets was observed. Micropores and rod-shaped manganese sulfide inclusions were also noted. The material had a hydrogen content of 22 ppm, and cracking was attributed to hydrogen embrittlement. Measurement of hydrogen content in the raw material prior to fabrication was recommended. Careful control of acid pickling procedures for descaling of the hot-rolled bars was also deemed necessary.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001562
EISBN: 978-1-62708-230-3
... Abstract The Pandia digester is a long cylindrical vessel which uses alkaline sulfite liquor to cook sawdust for pulping. The inlet cone was fabricated from AISI 304L stainless steel with E308 welds. Typical liquor concentration was approximately 80% NaOH, 20% Na2SO3 with chloride...
Abstract
The Pandia digester is a long cylindrical vessel which uses alkaline sulfite liquor to cook sawdust for pulping. The inlet cone was fabricated from AISI 304L stainless steel with E308 welds. Typical liquor concentration was approximately 80% NaOH, 20% Na2SO3 with chloride concentrations at 2 grams per liter. The operating pressures in the inlet cone were up to 1.2 MN/sq m (170 psig). The inlet cone had developed leaks within a year of service. Liquid penetrant inspection showed significant through-wall cracking near the fillet welds joining the bottom flange and side wall and the butt welds. Metallographic specimens were prepared from the welds to examine the microstructure and nature of the cracks. The cooking liquor at the inlet cone contained over ppm chlorides and was aggressive to 304 stainless steel. The cracking was identified as chloride-induced SCC. The inlet cone was replaced with an Inconel clad carbon steel inlet cone to combat the SCC.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001544
EISBN: 978-1-62708-219-8
... the material met chemical and mechanical property requirements, tests showed it had low fracture toughness and critical-sized flaws oriented normal to the principal stress in the failed junction piece. Fabrication procedures resulted in high residual stresses and a metallurgical notch at the radius...
Abstract
A large crack developed at a girder-truss joint area of the Fremont bridge in Portland, OR, on 28 Oct 1971. It occurred during a positioning procedure involving a junction piece welded to a girder, starting as a brittle fracture and terminating in plastic hinges in the girder web welds. The arch rib top plate, as it met the main girder, formed a composite beam of A588/A36 composition. Investigation showed the original design of the failed component called for an angle of high geometric stress concentration (90 deg with no radius) in a region of substantial transverse weld joints. While the material met chemical and mechanical property requirements, tests showed it had low fracture toughness and critical-sized flaws oriented normal to the principal stress in the failed junction piece. Fabrication procedures resulted in high residual stresses and a metallurgical notch at the radius in the junction piece. Stresses induced during jacking (the procedure used to raise bridge components into position) applied the stresses in the critical radius that triggered the cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046227
EISBN: 978-1-62708-217-4
... Abstract The floors (fabricated from aluminum alloy 7178-T6 sheet, with portions of the sheet chemically milled to reduce thickness) of the fuel tanks in two aircraft failed almost identically after 1076 and 1323 h of service, respectively. Failure in both tanks occurred in the rear chemically...
Abstract
The floors (fabricated from aluminum alloy 7178-T6 sheet, with portions of the sheet chemically milled to reduce thickness) of the fuel tanks in two aircraft failed almost identically after 1076 and 1323 h of service, respectively. Failure in both tanks occurred in the rear chemically milled section of the floor. An alkaline etch-type cleaner was used on the panels before chemical milling and before painting. Various tests and measurements indicated that the aluminum alloy used for the fuel-tank floors conformed to the specifications for 7178-T6. Low power magnification, fractographs taken with a scanning electron, and optical microscopic examination of the milled sections revealed extensive pitting on both sides of the floors. Evidence found supports the conclusions that the floors failed by fatigue cracking that initiated near the center of the fuel-tank floor and ultimately propagated as rapid ductile-overload fractures. The fatigue cracks originated in pits on the fuel-cell side of the tank floors. The pits were attributed to attack caused by the alkaline-etch cleaning process. Recommendations included monitoring of the alkaline-etch cleaning to avoid the formation of pits and careful inspection following alkaline-etch cleaning, to be scheduled before release of the floor panels for painting.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048139
EISBN: 978-1-62708-225-9
... Abstract The conical helical spring sealed, within each switch enclosure, fractured to lead to the failure of several electrical toggle switches. The spring was fabricated from 0.43 mm diam AISI type 302 stainless steel wires. Appreciable amount of scale was observed on the fracture surface...
Abstract
The conical helical spring sealed, within each switch enclosure, fractured to lead to the failure of several electrical toggle switches. The spring was fabricated from 0.43 mm diam AISI type 302 stainless steel wires. Appreciable amount of scale was observed on the fracture surface and tool marks were revealed on the inner surface of the broken spring. A typical fatigue fracture that originated at a tool mark on the wire surface was revealed by inspection of a fracture surface of the broken springs. Regions which displayed beach marks around the fracture origin and parallel striations within the beach-mark regions were revealed by scanning electron microscopy. As a corrective measure, the spring-winding operation was altered to eliminate the tool marks.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047199
EISBN: 978-1-62708-234-1
... that large changes in strength and exfoliation characteristics of 7075 forgings can be induced by changes in temperature or time of thermal treatment. With regard to the effect of quenching rate on exfoliation characteristics, a cold-water quench below 25 deg C (75 deg F) would appear to be far superior...
Abstract
The lower receiver of the M16 rifle is an anodized forging of aluminum alloy 7075-T6. Degradation of the receivers was observed after three years of service in a hot, humid atmosphere. The affected areas were those in frequent contact with the user's hands. There was no question that the material failed as a result of exfoliation corrosion, so an investigation was undertaken, centered around the study of thermal treatments that would increase the exfoliation resistance and still develop the required 448 MPa (65 ksi) yield strength. The results of the study concluded that rolled bar stock should be preferred to extruded bar stock. Differences in grain structure of the forgings, as induced by differences in thermal-mechanical history of the forged material, can have a significant effect on susceptibility to exfoliation corrosion. Regarding thermal treatment, the results show conclusively that large changes in strength and exfoliation characteristics of 7075 forgings can be induced by changes in temperature or time of thermal treatment. With regard to the effect of quenching rate on exfoliation characteristics, a cold-water quench below 25 deg C (75 deg F) would appear to be far superior to an elevated-temperature quench to minimize exfoliation for 7075 forgings in the T6 temper.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001662
EISBN: 978-1-62708-236-5
.... Considerable argument ensued about whether the cracking observed was due to poor welding during fabrication, or through abuse during handling on site. An SEM examination of the fractures revealed high cycle, low amplitude fatigue, and the problem was traced to vibration during road transport. Further failures...
Abstract
A steam heated exchanger was designed for concentrating sulfuric acid. Tantalum was selected for the tubing and the tube sheet liner because of its outstanding corrosion resistance. However, although the exchanger passed a searching shop inspection, it leaked during site testing. Considerable argument ensued about whether the cracking observed was due to poor welding during fabrication, or through abuse during handling on site. An SEM examination of the fractures revealed high cycle, low amplitude fatigue, and the problem was traced to vibration during road transport. Further failures were avoided by improved design and packing. This paper illustrated the value of SEM fractography when a rapid investigation is needed under the pressures of a fast moving project.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001047
EISBN: 978-1-62708-214-3
... the tube sheet to the floating skirt. Cracks penetrated deep into the tube sheet, and occasionally into the tube walls. The microstructures of both alloys and of the weld appeared normal. Intergranular corrosion characteristic of end-grain attack was apparent. A low dead spot at the skirt / tube sheet...
Abstract
An E-Brite /Ferralium explosively bonded tube sheet in a nitric acid condenser was removed from service because of corrosion. Visual and metallographic examination of tube sheet samples revealed severe cracking in the heat-affected zone between the outer tubes and the weld joining the tube sheet to the floating skirt. Cracks penetrated deep into the tube sheet, and occasionally into the tube walls. The microstructures of both alloys and of the weld appeared normal. Intergranular corrosion characteristic of end-grain attack was apparent. A low dead spot at the skirt / tube sheet joint allowed the Nox to condense and subsequently reboil. This, coupled with repeated repair welding in the area, reduced resistance to acid attack. Intergranular corrosion continued until failure. Recommendations included changing operating parameter inlet to prevent HNO3 condensation outside the inlet and replacement of the floating skirt with virgin material (i.e., material unaffected by weld repairs).
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... selection as a constant contributor to the design of a component also includes the necessity of incorporating requisite materials information on engineering drawings. Because a complete part drawing is a metric for establishing whether a fabricated component is acceptable, all pertinent characteristics must...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... of incorporating requisite materials information on engineering drawings. Because a complete part drawing is a metric for establishing whether a fabricated component is acceptable, all pertinent characteristics must be identified. The specificity of materials and processing information required for thorough...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048691
EISBN: 978-1-62708-220-4
... environment Heat Exchanger Tubes 410 UNS S41000 Pitting corrosion Many tube bundles in a heat exchanger fabricated from AISI type 410 stainless steel experienced leakage during hydrostatic testing. The tubes had not yet been in service, and no metallurgical deficiencies that could have caused...
Abstract
AISI type 410 stainless steel tube bundles in a heat exchanger experienced leakage during hydrostatic testing even before being in service. The inside surfaces of the tubes was observed to have been pitted. Chloride-ion pitting was revealed by the undercutting in the cross section of a pit and further confirmed by x-ray spectrometry. It was concluded that the failure was caused by pitting due to chlorides in the water used to flush the tubes before service. The use of brackish water to flush or test stainless steel equipment was recommended to avoid pitting.
1