Skip Nav Destination
Close Modal
Search Results for
engineering failure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 571 Search Results for
engineering failure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006815
EISBN: 978-1-62708-329-4
... Abstract The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause...
Abstract
The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause of failure. Next, the article discusses the steps involved in the engineering design process and explains the importance of considering the engineering design process. Information on failure modes and effects analysis is also provided. The article ends with a discussion on the consequence of management actions on failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001019
EISBN: 978-1-62708-217-4
... Abstract A broken aircraft crankshaft and a severely damaged main brass bearing were examined to determine whether engine failure was initiated in the bearing or in the crankshaft. The steel crankshaft failure was a classical fatigue fracture. The bearing had been subjected to extremely high...
Abstract
A broken aircraft crankshaft and a severely damaged main brass bearing were examined to determine whether engine failure was initiated in the bearing or in the crankshaft. The steel crankshaft failure was a classical fatigue fracture. The bearing had been subjected to extremely high temperatures, as indicated by melting in the brass components and the extreme distortion in the rollers. Microscopic examination on the crankshaft material showed it to be a good quality steel. On the other hand, the chromium plate was thick, porous, and cracked in many places, including the point of the main fatigue crack. It was concluded that the over-all failure was initiated in the crankshaft, and the failure of the bearing resulted from that failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089646
EISBN: 978-1-62708-235-8
... Abstract Nodular cast iron crankshafts and their main-bearing inserts were causing premature failures in engines within the first 1600 km (1000 mi) of operation. The failures were indicated by internal noise, operation at low pressure, and total seizing. Concurrent with the incidence of engine...
Abstract
Nodular cast iron crankshafts and their main-bearing inserts were causing premature failures in engines within the first 1600 km (1000 mi) of operation. The failures were indicated by internal noise, operation at low pressure, and total seizing. Concurrent with the incidence of engine field failures was a manufacturing problem: the inability to maintain a similar microfinish on the cope and drag sides of a cast main-bearing journal. Investigation supported the conclusion that the root cause of the failure was carbon flotation due to the crankshafts involved in the failures showing a higher-than-normal carbon content and/or carbon equivalent. Larger and more numerous cope side graphite nodules broke open, causing ferrite caps or burrs. They then became the mechanism of failure by breaking down the oil film and eroding the beating material. A byproduct was heat, which assisted the failure. Recommendations included establishing closer control of chemical composition and foundry casting practices to alleviate the carbon-flotation form of segregation. Additionally, some nonmetallurgical practices in journal-finishing techniques were suggested to ensure optimal surface finish.
Image
in Anomalous Fractures of Diesel Engine Bearing Cap Bolts[1]
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 2 Comparison of overload failures with a typical engine fracture (right). Uniaxial tensile failure on left and an overtorqued failure (combined stress state) at center. Both overload failures exhibit ductility, with plastic deformation Near the fracture regions reflected by a notable
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003502
EISBN: 978-1-62708-180-1
... Abstract This article provides assistance to a failure analyst in broadening the initial scope of the investigation of a physical engineering failure in order to identify the root cause of a problem. The engineering design process, including task clarification, conceptual design, embodiment...
Abstract
This article provides assistance to a failure analyst in broadening the initial scope of the investigation of a physical engineering failure in order to identify the root cause of a problem. The engineering design process, including task clarification, conceptual design, embodiment design, and detail design, is reviewed. The article discusses the design process at the personal and project levels but takes into consideration the effects of some higher level influences and interfaces often found to contribute to engineering failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046981
EISBN: 978-1-62708-218-1
... Abstract The exhaust valve of a truck engine failed after 488 h of a 1000 h laboratory endurance test. The valve was made of 21-2 valve steel in the solution treated and aged condition and was faced with Stellite 12 alloy. The failure occurred by fracture of the underhead portion of the valve...
Abstract
The exhaust valve of a truck engine failed after 488 h of a 1000 h laboratory endurance test. The valve was made of 21-2 valve steel in the solution treated and aged condition and was faced with Stellite 12 alloy. The failure occurred by fracture of the underhead portion of the valve. Analysis (visual inspection, electron probe x-ray microanalysis, hardness testing, 4.5x fractograph) supported the conclusions that failure of the valve stem occurred by fatigue as a result of a combination of a nonuniform bending load, which caused a mild stress-concentration condition, and a high operating temperature in a corrosive environment. When the microstructure near the stem surface was examined, it was apparent that carbide spheroidization had occurred. Also, there was a coarsening of the carbide network within the austenite grains. The microstructure indicated that the underhead region of the valve was heated to about 930 deg C (1700 deg F) during operation. The cause of fatigue fracture, therefore, was a combination of non-uniform bending loads and overheating. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001552
EISBN: 978-1-62708-217-4
... of untempered martensite. Magnification 100 times; 2 pct nital. Fatigue failures in crankshafts of small engines can also be caused in other ways. For example, propeller contacts with the ground would cause internal damage, and result in thrust line misalignments. Fatigue failures have also developed...
Abstract
This report covers case histories of failures in fixed-wing light aeroplane and helicopter components. A crankshaft of AISI 4340 Ni-Cr-Mo alloy steel, heat treated and nitrided all over, failed in bending fatigue. The nitrided layer was ground too rapidly causing excessive heat generation which induced grinding cracks and grinding burn. Tensional stresses resulting from grinding developed in a thin surface layer. On another crankshaft, chromium plating introduced undesirable residual tensile stresses. Such plating is an unsatisfactory finish for crankshafts of aircraft engines. Aircraft engine manufacturers and aeronautical standards require magnetic particle inspection to detect grinding cracks after reconditioning. Renitriding after any grinding is needed also, regardless of the amount of undersize as it introduces beneficial residual compressive stresses.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0005695
EISBN: 978-1-62708-180-1
... Abstract This article is a compilation of terms related to analysis and prevention of engineering failures. engineering failure analysis failure prevention COMMUNICATION is often the key issue in practical failure analysis. Communication is required among specific parties who...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001742
EISBN: 978-1-62708-217-4
... connecting rod Fatigue fracture The failures shown in Figs. 1 and 2 occurred in one helicopter engine model. High-cycle, low-stress fatigue fractures in bolts and arms progressed about 75 pct across the section before the final rupture. Factors involved are (1) insufficient specified preload, (2...
Abstract
In a helicopter engine connecting rod, high-cycle, low-stress fatigue fractures in bolts and arms progressed about 75% across the section before the final rupture. Factors involved were insufficient specified preload, inadequate tightening during assembly, and engine overspeed. The assigned main causes were design deficiency, improper maintenance during overhaul, and abnormal service operation. The problem can be solved by proper overhauling that ensures bolted assemblies are tightened evenly and accurately, in accordance with recommended torque values. Also, the manufacturer made various modifications, such as a thicker rod, fatigue resistant bolts, and more accurate preload measurements. The configuration of these rods were changed to a tongue-and-groove design to increase service life.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001418
EISBN: 978-1-62708-231-0
... the bearing material. The defect was stoned smooth, a new bearing fitted, and the engine returned to service. The engine performed satisfactorily for a further twelve months until fracture of the crankshaft through the No. 5 crank pin supervened. The fracture revealed a complex torsional fatigue failure...
Abstract
The crankshaft of a six cylinder, 225-hp diesel engine driving a small locomotive was examined. About nine months after installation a fall in oil pressure was traced to damage to No. 5 crank pin bearing. A small lip present on one side of the discontinuity apparently served to scrape the bearing material. The defect was stoned smooth, a new bearing fitted, and the engine returned to service. The engine performed satisfactorily for a further twelve months until fracture of the crankshaft through the No. 5 crank pin supervened. The fracture revealed a complex torsional fatigue failure. Microscopic examination revealed that the pin had been hard chromium plated and that the plating followed the curved edge of the outer extremity of the defect. This crank pin contained an inherent defect in the form of a slag inclusion or crack situated at the surface. That the crack only showed itself after a period of service suggests that initially it may have been slightly below the surface of the machined pin and some slight extension outwards took place in service.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001761
EISBN: 978-1-62708-241-9
... Straightness and misalignment check Abstract An investigation of a damaged crankshaft from a horizontal, six-cylinder, in-line diesel engine of a public bus was conducted after several failure cases were reported by the bus company. All crankshafts were made from forged and nitrided steel. Each...
Abstract
An investigation of a damaged crankshaft from a horizontal, six-cylinder, in-line diesel engine of a public bus was conducted after several failure cases were reported by the bus company. All crankshafts were made from forged and nitrided steel. Each crankshaft was sent for grinding, after a life of approximately 300,000 km of service, as requested by the engine manufacturer. After grinding and assembling in the engine, some crankshafts lasted barely 15,000 km before serious fractures took place. Few other crankshafts demonstrated higher lives. Several vital components were damaged as a result of crankshaft failures. It was then decided to send the crankshafts for laboratory investigation to determine the cause of failure. The depth of the nitrided layer near fracture locations in the crankshaft, particularly at the fillet region where cracks were initiated, was determined by scanning electron microscope (SEM) equipped with electron-dispersive X-ray analysis (EDAX). Microhardness gradient through the nitrided layer close to fracture, surface hardness, and macrohardness at the journals were all measured. Fractographic analysis indicated that fatigue was the dominant mechanism of failure of the crankshaft. The partial absence of the nitrided layer in the fillet region, due to over-grinding, caused a decrease in the fatigue strength which, in turn, led to crack initiation and propagation, and eventually premature fracture. Signs of crankshaft misalignment during installation were also suspected as a possible cause of failure. In order to prevent fillet fatigue failure, final grinding should be done carefully and the grinding amount must be controlled to avoid substantial removal of the nitrided layer. Crankshaft alignment during assembly and proper bearing selection should be done carefully.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001032
EISBN: 978-1-62708-214-3
... Abstract A Stirling engine heat pipe failed after only 2h of operation in a test situation. Cracking at the leading edge of an evaporator fin allowed air to enter the system and react with the sodium coolant. The fin was fabricated from 0.8 mm (0.03 in.) thick Inconel 600 sheet. The wick...
Abstract
A Stirling engine heat pipe failed after only 2h of operation in a test situation. Cracking at the leading edge of an evaporator fin allowed air to enter the system and react with the sodium coolant. The fin was fabricated from 0.8 mm (0.03 in.) thick Inconel 600 sheet. The wick material was type 316 stainless steel. Macro- and microexaminations of specimens from the failed heat pipe were conducted. The fin cracking was caused by overheating that produced intergranular corrosion in both the fin and the wick. Recommendations for alleviating the corrosion problem included reducing the heat flux, redesigning the wick, and reducing the oxygen content of the sodium.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001037
EISBN: 978-1-62708-214-3
... of the design to eliminate the raised central section were recommended. Engine components Low-carbon steel Brittle fracture Heat treating-related failures Background Six wrist pins designed especially for a high-performance six-cylinder automotive engine failed after 4800 km (3000 mi) of normal...
Abstract
Six wrist pins in a high-performance six-cylinder automotive engine failed after 4800 km (3000 mi) of normal operation. The pins were made of low-carbon steel that had been carburized both inside and outside. Two failed pins were examined. One had fractured into three pieces. The other had not fractured, but exhibited circumferential cracks on the surface of the central zone. Visual surface examination and metallographic and chemical analyses were performed on the specimens. Cracking was attributed primarily to poor heat treatment, resulting in a brittle grain-boundary network of cementite, and to a design that had a raised central section of the inner diameter whose fillets were locations of high stress concentration. Rough machining of the inner diameter and an excessively deep case also contributed to failure. A double type of heat treatment after carburizing and change of the design to eliminate the raised central section were recommended.
Image
Published: 01 January 2002
Fig. 4 Failure of a connecting rod bolt in a diesel engine. In (a), the failed bolt is the upper one, having necked down in a nominally larger cross-sectional area. The lower bolt is another removed from the engine in unstretched condition. In (b), the stretched region of the bolt is shown
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001612
EISBN: 978-1-62708-218-1
... failures Brittle fracture Background A cooling fan fitted onto a diesel engine catastrophically failed after 103 h of operation. The field service report showed that the fan blades were cracked and mounting bolts were sheared from the mount. It was found that the spider had cracked at the OD...
Abstract
The fan used to cool a diesel engine fractured catastrophically after approximately 100 h of operation. The fan failed at a spider, which was resistance spot welded to a shim placed between two circular spiders of 3 mm thickness. The detailed analysis of the fracture indicated that the premature failure of the fan was due to inadequate bonding between the sheets at the weld nugget. The fracture was initiated from the nugget-plate interface. The inadequate penetration and lack of fusion between the steel sheets during resistance spot welding led to poor weld strength and the fracture during operation. The propensity to crack initiation and failure was accentuated by improper cleaning of the surfaces prior to welding and to inadequate nugget-to-sheet edge distance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001543
EISBN: 978-1-62708-218-1
... of Piston No. 2 indicate that failure was due to fatigue. Black spots are debris. 15,000×. Conclusions The high temperatures developed in this engine created an environment too severe for 357 aluminum. Surfaces were so hot that the low-melting constituent melted. Then, the alloy oxidized rapidly...
Abstract
To determine the effect of severe service on cast 357 aluminum pistons, a metallurgical evaluation was made of four pistons removed from the engine of the Hawk-Offenhauser car which had been driven by Rich Muther in the first Ontario, California 500 race. The pistons were studied by visual inspection, hardness traverses, radiography, dye penetrant inspection, chemical analysis, macrometallography, optical microscopy, and electron microscopy. The crown of one piston had a rough, crumbly deposit, which was detachable with a knife. Two pistons had remains of carbonaceous deposits. The fourth was severely hammered. It was concluded that the high temperatures developed in this engine created an environment too severe for 357 aluminum. Surfaces were so hot that the low-melting constituent melted. Then, the alloy oxidized rapidly to form Al2O3, an abrasive which further aggravated problems. The temperature in much of the piston was high enough to cause softening by overaging, lowering strength.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001417
EISBN: 978-1-62708-227-3
... in the longitudinal direction. Although the longitudinal crack preceded the transverse ones, it would appear that once initiated, the latter developed at a greater rate than the former. Diesel engines Nonmetallic inclusions Pins Steel Fatigue fracture Very few failures in general are attributable...
Abstract
A marine diesel running at 350 rpm had satisfactorily completed 13,000 h before failure of one of the piston pins took place. The pin, 17 in. long, with a central bore of 3 in. diam, failed transversely approximately 3 in. from one end. The characteristic conchoidal markings indicative of fatigue failure were present with origins at about the mid-thickness of the pin located each side of the step in the fracture surface. In addition, cracking was evident in the axial direction. The crack ran into one of the radial oil holes near the end of the pin. A further section was taken transverse to the crack surface and subsequent examination confirmed the presence of a slag inclusion on the edge of the crack. The inclusion ran the full length of the component. The stress raising effect of the inclusion in combination with the residual and service stresses served to initiate the cracking in the longitudinal direction. Although the longitudinal crack preceded the transverse ones, it would appear that once initiated, the latter developed at a greater rate than the former.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001673
EISBN: 978-1-62708-227-3
... and copper reprecipitation. Heat exchanger tubes Marine environments Sulfides 90Cu-10Ni Intergranular corrosion The failure of a heat exchanger tube in a marine engine resulted in flooding of the vessel and subsequently sinking it. The coolant utilized in this engine was nonrecirculated...
Abstract
The failure of a 90-10 cupronickel heat exchanger tube resulted in flooding of the vessel and subsequently sinking it. The corrosion of the cupronickel alloy was facilitated by the high sulfur content of the seawater in which it operated. The failure modes were anodic dissolution and copper reprecipitation.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001755
EISBN: 978-1-62708-241-9
... assembly became jammed and rendered the engine unserviceable. The balls had the shoulder impression of the outer race. It indicated that the balls were off-center and rode over the shoulder of the outer race before failure. The cage material was smeared on the balls. This may be due to jamming...
Abstract
An aero engine failed due to the misalignment of the ball bearing fitted on the main shaft of the engine. The aero engine incorporates two independent compressors: a six-stage axial flow LP compressor and a nine-stage axial flow HP compressor. The bearing under consideration is a HP location bearing and is fitted at the rear of the nine-stage compressor. It was supposed to operate for at least 5000 h, but failed catastrophically after 1300 h, rendering the engine unserviceable. Unusually high stresses caused by misalignment and uneven axial loading resulted in the generation of fatigue crack(s) in the inner race. When the crack reached the critical size, the collar of the race fractured, causing subsequent damage. The cage also failed due to excessive stresses in the axial direction, and its material was smeared on the steel balls and the outer race.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001023
EISBN: 978-1-62708-214-3
... Abstract The failure of an ATAR engine accessory angle drive gear assembly caused an engine flame-out in a Mirage III aircraft of the Royal Australian Air Force (RAAF) during a landing. Stripping of the engine revealed that the bevel gear locating splines (16 NCD 13) had failed. Visual and low...
Abstract
The failure of an ATAR engine accessory angle drive gear assembly caused an engine flame-out in a Mirage III aircraft of the Royal Australian Air Force (RAAF) during a landing. Stripping of the engine revealed that the bevel gear locating splines (16 NCD 13) had failed. Visual and low-power microscope examination of the spline of the shaft showed evidence of fretting wear debris; similar wear was observed on the splines of the mating bevel gear. It was concluded that the splines had failed by severe fretting wear. Fretting damage was also observed on the shaft face adjacent to the splines and on the bevel gear abutment shoulder. Additional tests included a metrological inspection of the shaft, bevel gear and support ring; metallographic examination of a section from the shaft; chemical analysis of the shaft material (16 NCD 13); and hardness testing of a sample of the yoke material. The wear had been caused by incorrect machining of the shaft splines, which prevented the bevel gear nut from locating correctly against the gear.