1-20 of 333 Search Results for

engine components

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001758
EISBN: 978-1-62708-241-9
... at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries. gas turbine engine components creep deformation overheating nickel-base superalloy interdendritic stress-rupture fracture stress-rupture testing stress-rupture life Cast nickel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001489
EISBN: 978-1-62708-217-4
... impact loading; the comparison is being made with the polished surfaces and the tensile specimen fracture surfaces. The inclusions in the failed retaining ring were compared with the ones in a similar component obtained from a used engine. In the case of the latter, a large number of fine and elongated...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... Abstract Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... Abstract Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
... (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... Abstract Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001756
EISBN: 978-1-62708-241-9
...Abstract Abstract The failure of HP turbine blades in a low bypass turbofan engine was analyzed to determine the root cause. Forensic and metallurgical investigations were conducted on all failed blades as well as failed downstream components. It was found that one of the blades fractured...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001119
EISBN: 978-1-62708-214-3
... springs are used in a component of heavy truck engines. They may be subjected to corrosive environments, including exposure to exhaust gases. After approximately 80,000 km (50,000 mi) of service, broken springs were found in two engines. The trucks were used on public highways and were exposed...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... Abstract Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001657
EISBN: 978-1-62708-227-3
... of propagation [ 2 , 3 ]. Prior to any detailed SEM examination of the fractured surface of a high temperature turbine engine component, the use of a surface cleaning treatment is generally necessary to remove some of the adherent oxidation and/or corrosion products formed during service. Techniques...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001761
EISBN: 978-1-62708-241-9
... for grinding, after a life of approximately 300,000 km of service, as requested by the engine manufacturer. After grinding and assembling in the engine, some crankshafts lasted barely 15,000 km before serious fractures took place. Few other crankshafts demonstrated higher lives. Several vital components were...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001667
EISBN: 978-1-62708-235-8
..., homogeneity, etc.) be obtained either before initial use of a component, or before the use of a component can be safely resumed. In this paper, the use of standard metallurgical laboratory equipment, and the procedures required to conduct nondestructive on-site metallographic analyses of engineering materials...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001037
EISBN: 978-1-62708-214-3
... of the design to eliminate the raised central section were recommended. Engine components Low-carbon steel Brittle fracture Heat treating-related failures Background Visual Examination of General Physical Features Testing Procedure and Results Discussion Conclusion and Recommendations...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001748
EISBN: 978-1-62708-225-9
... spline. Wear on the spline teeth flanks of the coupling was attributed to severe wear on the mating gear (internal) spline teeth. The assigned cause was an inadequate maintenance procedure which resulted in a wear-damaged component being retained in the power train during engine overhaul. To prevent...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001552
EISBN: 978-1-62708-217-4
...Abstract Abstract This report covers case histories of failures in fixed-wing light aeroplane and helicopter components. A crankshaft of AISI 4340 Ni-Cr-Mo alloy steel, heat treated and nitrided all over, failed in bending fatigue. The nitrided layer was ground too rapidly causing excessive...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048616
EISBN: 978-1-62708-217-4
...Abstract Abstract A T-bolt was part of the coupling for a bleed air duct of a jet engine on a transport plane. Specifications required that the 4.8 mm diam component be made of AISI type 431 stainless steel and heat treated to 44 HRC. The operating temperature of the duct is 425 to 540 deg C...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
... cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making the steel, forging the shape, and preliminary heat...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... commonly associated with the development of SCC, although not all, and numerous case studies. engineering alloys metallic components SCC mitigation stress-corrosion cracking CORROSION is the deterioration of a material due to its environment. Although corrosion is often thought...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001760
EISBN: 978-1-62708-241-9
...Abstract Abstract This article presents a failure analysis of an aluminum cylinder head on an automotive engine. During an endurance test, a crack initiated from the interior wall of a hole in the center of the cylinder head, then propagated through the entire thickness of the component...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047860
EISBN: 978-1-62708-218-1
.... As a corrective measure, ultrasonic inspection was used in addition to magnetic-particle inspection to detect discontinuities. Engine components Reciprocating engines Stress concentration 1040 UNS G10400 Fatigue fracture The crankshaft in a reciprocating engine had been in operation for less than...