1-20 of 81 Search Results for

endurance

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 2019
Fig. 3 Block diagram of endurance testing machine More
Image
Published: 01 December 2019
Fig. 4 Endurance testing machine More
Image
Published: 30 August 2021
Fig. 5 General relationship between rotating-bending endurance limit and tensile strength of wrought steels. Adapted from Ref 6 More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001759
EISBN: 978-1-62708-241-9
... solutions were identified and then validated based on chemical analysis, endurance and hardness tests, and microstructural examination. The investigation revealed that carbonitriding can effectively eliminate the type of failure encountered because it prevents through hardening of the bearing cup assembly...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001430
EISBN: 978-1-62708-236-5
... by the engine-builder established that the manufacture of these two shafts had been subcontracted. It was ascertained that the taper portions had been machined to an incorrect angle and then subsequently built-up and remachined to the correct taper. The reduction in fatigue endurance following welding was due...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001459
EISBN: 978-1-62708-234-1
... Abstract Fundamentals of fatigue failure are outlined. Addressed are fatigue crack characteristics, basic crack types, unidirectional bending, alternate bending, rotary bending, torsion, direct stress, and combined stress. Stress cycle, endurance limits, under and overstressing, stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0048592
EISBN: 978-1-62708-218-1
... was of insufficient alloy content. Also, the tensile strength and endurance limit were lower than specified and were inadequate for the application. The material for the cap screw was changed from modified 1035 steel to 5140 steel. Brittle fracture Fatigue limit Tensile strength 1035 UNS G10350 Fatigue...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046981
EISBN: 978-1-62708-218-1
... Abstract The exhaust valve of a truck engine failed after 488 h of a 1000 h laboratory endurance test. The valve was made of 21-2 valve steel in the solution treated and aged condition and was faced with Stellite 12 alloy. The failure occurred by fracture of the underhead portion of the valve...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001760
EISBN: 978-1-62708-241-9
... Abstract This article presents a failure analysis of an aluminum cylinder head on an automotive engine. During an endurance test, a crack initiated from the interior wall of a hole in the center of the cylinder head, then propagated through the entire thickness of the component. Metallurgical...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... Abstract A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0005695
EISBN: 978-1-62708-180-1
... of terms that have been removed from glossaries created by consensus approval. An example is the term endurance limit. The endurance limit presumably indicates a threshold stress for infinite life in cyclic loading. It appears in S-N data for materials that strain age and is therefore associated...
Image
Published: 15 January 2021
Fig. 28 Surface of a torsional fatigue fracture in an induction-hardened 1041 (1541) steel shaft, which fractured after 450 h of endurance testing More
Image
Published: 01 January 2002
Fig. 19 Surface of a torsional-fatigue fracture in an induction-hardened 1041 (1541) steel shaft. The shaft fractured after 450 hours of endurance testing. 1 1 4 × More
Image
Published: 15 January 2021
Fig. 28 (a) Fading of surface compressive stress induced with a number of fretting cycles by shot peening. Adapted from Ref 93 . (b) Evolution of fretting fatigue endurance (cracking failure) as a function of fatigue stress for constant partial slip fretting loading ( P = Cst, Q * = Cst More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006840
EISBN: 978-1-62708-329-4
... be misinterpreted include static fatigue and stress cracking . The compilers also discourage the use of terms that have been removed from glossaries created by consensus approval. An example is the term endurance limit . The endurance limit presumably indicates a threshold stress for infinite life...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006798
EISBN: 978-1-62708-295-2
... . The compilers also discourage the use of terms that have been removed from glossaries created by consensus approval. An example is the term endurance limit . The endurance limit presumably indicates a threshold stress for infinite life in cyclic loading. It appears in S - N data for materials that strain...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
... and the microstructural feature of butterfly wings indicate the gear failure started by rolling-contact fatigue. Rolling-contact fatigue is the result of stresses very near the contact area exceeding the endurance limit of the material. The endurance limit is the minimum stress level required to initiate fatigue...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001042
EISBN: 978-1-62708-214-3
... a reversed bending, low-cycle, low-nominal-stress fatigue failure. Because the region of final, fast fracture was extremely small, it was deduced that the overload was probably slightly higher than that required to cause fracture. In this case, the loading would be slightly higher than the endurance limit...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001288
EISBN: 978-1-62708-215-0
... of the table material. 83×. Mechanical Properties Mechanical properties of the platen material are given in Table 2 . The endurance limit (σ eo ) of cast steels in reversed bending is generally as sumed to be equal to 40% of the tensile strength of steel. Then, σ eo = 0.4 σ TS...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
... for the gearbox shaft which contained a design-induced notch because this steel has an increasing notch endurance with increasing tensile strength. Although this is an anomaly compared to other grades of steels where notch endurance decreases with increasing strength level [ 5 ], the fatigue endurance...