Skip Nav Destination
Close Modal
Search Results for
elevated temperature applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 175 Search Results for
elevated temperature applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
...–2800 0.4–0.45 T M Typical elevated temperatures in engineering applications Table 2 Typical elevated temperatures in engineering applications Application Typical materials Typical temperatures, K Homologous temperatures, T / T M Rotors and piping for steam...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090439
EISBN: 978-1-62708-220-4
...Abstract Abstract A section of clear polymeric tubing failed while in service. The failed sample had been used in a chemical transport application. The tubing had also been exposed to periods of elevated temperature as part of the operation. The tubing was specified to be a polyvinyl chloride...
Abstract
A section of clear polymeric tubing failed while in service. The failed sample had been used in a chemical transport application. The tubing had also been exposed to periods of elevated temperature as part of the operation. The tubing was specified to be a polyvinyl chloride (PVC) resin plasticized with trioctyl trimellitate. Investigation included visual inspection, micro-FTIR in the ATR mode, and thermogravimetric analysis. The spectrum on the failed tubing exhibited absorption bands indicative of a PVC resin containing an adipate-based plasticizer. Thermograms of the failed pieces and a reference sample of tubing that performed well showed that the reference material contained a trimellitate-based plasticizer and that the failed material contained an adipate-based material. The conclusion was that the failed tubing had been produced from a formulation that did not comply with the specified material and, as a result, was not as thermally stable as the reference material.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001901
EISBN: 978-1-62708-218-1
... premature failure of the part. POM should not be selected for automotive applications where elevated temperatures and acidic environments can exist. If exposure to acid is suspected, sodium bicarbonate should be applied to neutralize the surrounding environment, followed by copious quantities of water...
Abstract
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to analyze an automotive polyoxymethylene (POM) sensor housing that was depolymerizing during service. It was found that a combination of heat, oxygen, and sulfuric acid attacked and caused premature failure of the part. POM should not be selected for automotive applications where elevated temperatures and acidic environments can exist. If exposure to acid is suspected, sodium bicarbonate should be applied to neutralize the surrounding environment, followed by copious quantities of water, and repeated until no effervescence is observed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090442
EISBN: 978-1-62708-218-1
... properties of the sleeves. The cause of the degradation was not evident, but the likely source appears to be the molding operation and exposure to elevated temperature for an extended period of time. Automotive components Cracking (fracturing) Glass fiber reinforced composites Injection molding...
Abstract
A number of plastic sleeves used in an automotive application cracked after assembly but prior to installation into the mating components. The sleeves were specified to be injection molded from a 20% glass-fiber-reinforced polybutylene terephthalate (PBT) resin. After molding, electronic components are inserted into the sleeves, and the assembly is filled with a potting compound. Investigation of the cracked parts and some reference parts available for testing included visual inspection, micro-FTIR in the ATR mode, and analysis using DSC. Subtle spectrum differences suggested degradation of the failed part material, and the thermograms supported this. The conclusion was that the failed sleeves had cracked due to embrittlement associated with severe degradation and the corresponding molecular weight reduction. The reduction in molecular weight significantly reduced the mechanical properties of the sleeves. The cause of the degradation was not evident, but the likely source appears to be the molding operation and exposure to elevated temperature for an extended period of time.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... in such applications. For other types of cracks, the ligament size is assumed to be the final crack size. The equation governing the fatigue crack growth behavior as a function of hold time for 2.25Cr-1Mo steel at 538 °C (1000 °F) was derived from tests conducted at elevated temperature described in Ref 29...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
.... , Sreeranganathan A. , Carter P. , and Read S. , “ Experience in the Application of the Omega Creep Model in Creep Experiments and Component Analysis ,” Proceedings of the ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries ( Seattle...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... graphite; MG, mixed graphite; CG, compacted graphite Effect of molybdenum content on the elevated-temperature tensile properties of 4% Si ductile iron Table 4 Effect of molybdenum content on the elevated-temperature tensile properties of 4% Si ductile iron Iron (a) 0.2% offset yield...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
..., and temper embrittlement reduce the life expectancy of a component. Steel-Based Alloys Steel-based alloys, such as carbon steels, low-alloy steels, and stainless steels, are used at elevated-temperature applications for tubing and piping. The steel-based alloys perform well if operated within...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001657
EISBN: 978-1-62708-227-3
... ). 15. Venugopal Reddy A. , Pract. Met. , Vol. 19 , p. 659 ( 1982 ). 16. Koul A. K. and Wallace W. , Met. Trans. , Vol. 13A , p. 673 ( 1982 ). 10.1007/BF02644434 17. Source Book on Materials for Elevated Temperature Application , Bradley E. F. , (ed.), ASM...
Abstract
The circumstances surrounding the in-service failure of a cast Ni-base superalloy (Alloy 713LC) second stage turbine blade and a cast and coated Co-base superalloy (MAR-M302) first stage air-cooled vane in two turbine engines used for marine application are described. An overview of a systematic approach, analyzing the nature of degeneration and failure of the failed components, utilizing conventional metallurgical techniques, is presented. The topographical features of the turbine blade fracture surface revealed a fatigue-induced crack growth pattern, where crack initiation had taken place in the blade trailing edge. An estimate of the crack-growth rate for the stage II fatigue fracture region coupled with the metallographic results helped to identify the final mode of the turbine blade failure. A detailed metallographic and fractographic examination of the air-cooled vane revealed that coating erosion in conjunction with severe hot-corrosion was responsible for crack initiation in the leading edge area.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... 650 1200 0.56 T M Refractory metals and alloys 980–1540 1800–2800 0.4–0.45 T M Typical elevated temperatures in engineering applications Table 2 Typical elevated temperatures in engineering applications Application Typical materials Typical temperatures, K Homologous...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites. atmospheric corrosion blind fasteners composites fastener failures fatigue fracture fretting hydrogen embrittlement liquid-immersion corrosion liquid-metal embrittlement...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001559
EISBN: 978-1-62708-229-7
... Cracking of Sensitized Type 304 Stainless Steel in Oxygenated Pure Water at Elevated Temperatures (Review) , Corrosion, pp. 653 – 665 , December 1981 . 10.5006/0010-9312-36.12.653 4. Cragnolino G. , and Macdonald D. D. , Intergranular Stress Corrosion Cracking of Austenitic Stainless...
Abstract
One inch diam Type 304 stainless steel piping was designed to carry containment atmosphere samples to an analyzer to monitor hydrogen and oxygen levels during operational and the design basis accident conditions that are postulated to occur in a boiling water reactor. Only one of six lines in the system had thru-wall cracks. Shallow incipient cracks were detected at the lowest elevations of one other line. The balance of the system had no signs of SCC attack. Chlorides and corrosion deposits in varying amounts were found throughout the system. The failure mechanism was transgranular, chloride, stress-corrosion cracking. Replacement decisions were based on the presence of SCC attack or heavy corrosion deposits indicative of extended exposure time to chloride-contaminated water. The existing uncracked pipe, about 75 percent of the piping in the system, was retained despite the presence of low level surface chlorides. Controls were implemented to insure that temperatures are kept below 150 deg F, or, walls of the pipe are moisture-free or the cumulative wetted period will never exceed 30 h.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001821
EISBN: 978-1-62708-241-9
...Abstract Abstract A fire in a storage yard engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of the truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly...
Abstract
A fire in a storage yard engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of the truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, following the girth welds that connect them to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on the metallography of the tank pieces, the approximate tank temperature at the onset of explosion was determined. Metallurgical analysis provided additional insights as well as a framework for making tanks less susceptible to this destructive failure mechanism.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001852
EISBN: 978-1-62708-241-9
... of nickel has been considered by researchers [ 5 ]; however, cyclic properties of electroformed nickel at room and elevated temperature have not received much attention even though such properties should be known for the design and application of electroformed nickel parts. Monotonic and cyclic testing...
Abstract
A 2–3 mm thick electroformed nickel mold showed early cracking under thermal load cycles. To determine the root cause, investigators obtained monotonic and cyclic properties of electroformed nickel at various temperatures and identified possible fatigue mechanisms. With the help of finite element modeling, they analyzed the material as well as the design and in-service application of the mold. They discovered that overconstraining the mold, while it was in service, caused excessive thermal stresses which accelerated crack initiation and propagation. Investigators also proposed remedies to prevent additional failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment. elevated-temperature life assessment fabrication failure analysis fatigue life assessment fitness-for-service life assessment material defects nondestructive...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047010
EISBN: 978-1-62708-234-1
...Abstract Abstract When bulging occurred in mortar tubes made of British I steel during elevated-temperature test firing, a test program was formulated to evaluate the high-temperature properties (at 540 to 650 deg C, or 1000 to 1200 deg F) of the British I steel and of several alternative...
Abstract
When bulging occurred in mortar tubes made of British I steel during elevated-temperature test firing, a test program was formulated to evaluate the high-temperature properties (at 540 to 650 deg C, or 1000 to 1200 deg F) of the British I steel and of several alternative alloys including a maraging steel (18% Ni, grade 250), a vanadium-modified 4337 gun steel (4337V), H19 tool steel, and high-temperature alloys Rene 41, Inconel 718, and Udimet 630. All the alloys evaluated had been used in mortar tubes previously or were known to meet the estimated minimum yield strength. The alloys fall in this order of decreasing strengths: Udimet 630, Inconel 718, Rene 41, H19 tool steel, British I steel, 4337V gun steel, and maraging steel. When cycled between room temperature and 540 to 650 deg C (1000 to 1200 deg F), only Udimet 630, Inconel 718, and Rene 41 retained yield strengths higher than the minimum. Also, these three alloys maintained high strengths over the tested range, whereas the others decreased in yield strength as cycling progressed. Analysis showed Inconel 718 was considered best suited for 81-mm mortar tubes, and widespread industrial use ensured its availability.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046972
EISBN: 978-1-62708-217-4
.... , Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing , Failure Analysis and Prevention , Vol. 11 , ASM Handbook , ASM International , 2002 , p. 289 – 311 10.31399/asm.hb.v11.a0003517 • Pond R.B. Jr. , and Shifler D. A. , High-Temperature Corrosion...
Abstract
During disassembly of an engine that was to be modified, a fractured turbine blade was found. When the fracture was examined at low magnification, it was observed that a fatigue fracture had originated on the concave side of the leading edge and had progressed slightly more than halfway from the leading edge to the trailing edge on the concave surface before ultimate failure occurred in dynamic tension. Analysis (including visual inspection, SEM, and 250x/500x micrographic examination) supported the conclusions that the blades failed due to thermal fatigue. Recommendations included application of a protective coating to the blades, provided the coating was sufficiently ductile to avoid cracking during operation to prevent surface oxidation. Such a coating would also alleviate thermal differentials, provided the thermal conductivity of the coating exceeded that of the base metal. It was also determined that directionally solidified blades could minimize thermal fatigue cracking by eliminating intersection of grain boundaries with the surface. However, this improvement would be more costly than applying a protective coating.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4