1-20 of 144 Search Results for

electronic devices

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 30 August 2021
Fig. 13 Scanning electron microscopy micrographs of two different surgical devices showing (a) elongated microvoid coalescence morphology indicative of ductile tearing and (b) river patterns indicative of brittle fracture. The direction of crack propagation is marked by an orange arrow in each More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001841
EISBN: 978-1-62708-241-9
... damage concerns, many electronics industry cleaning procedures do not utilize ultrasound. These cleaning procedures include overflow and cascading rinse-baths, as well as spin and spray rinsing [ 5 ]. Any new cleaning process applied to small medical devices should be analyzed for each specific...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001664
EISBN: 978-1-62708-226-6
... application and to determine the cause of the failure. The shape of the device and its surface condition were examined and the surface condition was examined further at low magnification with an optical microscope. Fractography was carried out using optical and scanning electron microscopy. A section...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001492
EISBN: 978-1-62708-235-8
... plating steps. It was recommended that tin plating should follow the copper underplating within 24 h and a cleaning step of bright dipping after copper plating be performed. Copper plating Electroless nickel plating Electronic devices Tin plating C17500 UNS C17500 Electroless nickel Surface...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049796
EISBN: 978-1-62708-235-8
... that no materials compatibility problems existed. During later production of this device, however, significant problems were encountered. Several actuators were opened to examine the bridgewires, pins, and the adjacent pyrotechnic surfaces. These were examined using a scanning electron microscope equipped...
Image
Published: 01 June 2019
Fig. 1 Scanning electron micrographs of the fracture surfaces of two of the failed stainless steel fixation implant devices. Note the numerous parallel striations heralding the crack advance during repeated stressings, indicative of fatigue failure. Although four different implant devices were More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... Abstract Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001134
EISBN: 978-1-62708-214-3
.... SEM fractography and metallography indicated that the link failed in a ductile manner because of tensile overload, which occurred when the hoist hook contacted the hoist's housing and prevented uptake of the chain. It was recommended that a load-sensing device be installed to prevent future...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... ensures its operation. Passive devices are purely mechanical, whereas active vascular devices require electronics to facilitate control and operation feedback for the device to function properly. Active vascular implants include implantable cardioverter defibrillators (ICDs), pacemakers, left ventricular...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
... Abstract A failure analysis was conducted on a flow-sensing device that had cracked while in service. The polysulfone sensor body cracked radially, adjacent to a molded-in steel insert. This article describes the investigative methods used to conduct the failure analysis. The techniques...
Image
Published: 30 August 2021
Fig. 26 Scanning electron microscopy images of fractured low-strength nitinol wire device. (a) Overview of fractured wire showing secondary cracks at the compressive side of the sharp shape-set bends, as marked by white arrows. (b) High-magnification view of fracture surface exhibiting More
Image
Published: 01 January 2002
Fig. 9 Fracture in a thin medical device manufactured from type D 2 tool steel. (a) View showing a fractured massive carbide and associated matrix crack. Scanning electron micrograph. 1187× (b) Cross section through a cracked region in a similar part showing brittle fracture in the carbides More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... Abstract Total knee prostheses were retrieved from patients after radiographs revealed fracture of the Ti-6A1-4 VELI metal backing of the polyethylene tibial component. The components were analyzed using scanning electron microscopy. Porous coated and uncoated tibial trays were found to have...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001391
EISBN: 978-1-62708-215-0
... Electronic devices Gold Lead-tin Polymer (Other, miscellaneous, or unspecified) failure Background Several surface-mount chip resistor assemblies failed during monthly thermal shock testing and in the field. Circumstances Leading to Failure The resistor, the only electrically active...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... to the energy of the incoming x-ray. Placing a voltage across the chip makes it function as an intrinsic semiconductor, and the electrons move to one side of the chip while the holes move to the opposite side, producing a charge pulse from the device. Because the charge pulse is proportional to the number...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001078
EISBN: 978-1-62708-214-3
... machine. The gear motion is transmitted from a speed-reducing device with controlled, adjustable timing to produce proper fit of the valve closure. Pertinent Specifications The material that is specifically recommended for low-speed gear and high-load carry-in capacity corresponds to ASTM standard...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... Abstract This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
...Summary chart of techniques discussed in this article Table 2 Summary chart of techniques discussed in this article Feature Technique AES XPS TOF-SIMS Probe beam Electrons X-ray photons Ions Analyzed beam Electrons Electrons Ions Average sampling depth 5 nm 5 nm...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
.... Applications Bone screws are used to fasten bone plates during the surgical implantation of fixation devices employed to maintain the shape of a reconstructed bone in fracture treatment of an injured patient or, in corrective surgery, to stabilize the sectioning and realignment of bone. These devices...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
.... Chesnutt J.C. and Williams J.C. : “ Comments on the Electron Fractography of Alpha Titanium ,” Metall. Trans. A , 1977 , 8 ( 3 ), pp. 514 – 515 10.1007/BF02661765 . Selected references Selected references • Friction and Wear of Medical Implants and Prosthetic Devices , Materials...