Skip Nav Destination
Close Modal
Search Results for
electron probe microanalysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 44 Search Results for
electron probe microanalysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Metallurgical Investigation of a Prematurely Failed Roller Bearing Used in the Support and Tilting System of a Steel Making Converter Used in an Integrated Steel Plant
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 9 Electron probe microanalysis (EPMA) scans of brittle alumina stringers observed in the failed converter bearing sample. (a) Backscattered electron (BSE) image; (b) O 2 X-ray map; (c) Al X-ray map. All, 600×
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
.... Microstructural issues influencing roll quality, such as characteristics of carbides, tempered martensite, retained austenite, etc., have been extensively studied through optical and scanning electron microscopy, electron-probe microanalysis, image analysis, and x-ray diffractometry. These are discussed...
Abstract
Although a precise understanding of roll failure genesis is complex, the microstructure of a broken roll can often unravel intrinsic deficiencies in material quality responsible for its failure. This is especially relevant in circumstances when, even under a similar mill-operating environment, the failure involves a particular roll or a specific batch of rolls. This paper provides a microstructural insight into the cause of premature breakage of a second-intermediate Sendzimir mill drive roll used at a stainless steel sheet rolling plant under the Steel Authority of India Limited. Microstructural issues influencing roll quality, such as characteristics of carbides, tempered martensite, retained austenite, etc., have been extensively studied through optical and scanning electron microscopy, electron-probe microanalysis, image analysis, and x-ray diffractometry. These are discussed to elucidate specific microstructural inadequacies that accentuated the failure. The study reveals that even through retained austenite content is low (6.29 vol%) and martensite is non-acicular, the roll breakage is a consequence of intergranular cracking caused by improper carbide morphology and distribution.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001247
EISBN: 978-1-62708-228-0
... at 1150 psig. The sour gas was heated to 600 deg F by burners playing on the outside of the tube burning “sweet” gas plus air. The inner and outer surfaces of all samples showed evidence of corrosive attack. Electron probe microanalysis showed the corrosion products contained sulfur with iron, together...
Abstract
Three samples from a ruptured 316 stainless steel tube were examined. The tube, 114 mm OD, wall thickness 8.00 mm, with 13 mm thick 321 stainless steel fins welded to the outer surface of the tube, was part of a heater through which sour gas, containing methane plus H2S and CO, passed at 1150 psig. The sour gas was heated to 600 deg F by burners playing on the outside of the tube burning “sweet” gas plus air. The inner and outer surfaces of all samples showed evidence of corrosive attack. Electron probe microanalysis showed the corrosion products contained sulfur with iron, together with nickel to a lesser extent. Local thinning, cavitation, and ductile deformation markings associated with the unmatched sample taken from the center of the fire showed the tube ruptured as a result of overheating. Overheating while the temperature recorder was off the chart caused severe loss of tube strength, resulting in ductile rupture. The minimum overheating temperature could be deduced at around 1200 deg F due to the presence of a eutectic observed metallographically within the surface corrosion products.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001532
EISBN: 978-1-62708-232-7
... roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life. Hardness Hot...
Abstract
Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although spalling can be a culmination of roll material quality and/or mill abuse, the microstructure of a broken roll can often unveil intrinsic inadequacies in roll material quality that possibly accentuate failure. This is particularly relevant in circumstances when rolls, despite operation under similar mill environment, exhibit variations in roll life. The paper provides an insight into the microstructural characteristics of spalled ICED HSM work rolls, which underwent failure under similar mill operating environment in an integrated steel plant under the Steel Authority of India Limited. Microstructural features influencing ICDP roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
..., carburizing grade steel and had failed in service within a year of fitting to a repaired shaft. Microscopic observations of both the broken roller and inner-race samples revealed subsurface cracking and preponderance of brittle oxide and other macroinclusions. Electron probe microanalysis studies confirmed...
Abstract
An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon, carburizing grade steel and had failed in service within a year of fitting to a repaired shaft. Microscopic observations of both the broken roller and inner-race samples revealed subsurface cracking and preponderance of brittle oxide and other macroinclusions. Electron probe microanalysis studies confirmed that the brittle oxides that formed stringers were alumina, and the other macroinclusions were complex silicates. Both the alumina and silicate inclusions were deleterious to contact-fatigue properties. Microstructurally, the carburized regions of the broken roller and of inner-race samples contained high-carbon tempered martensite. Microhardness measurements revealed that. Although the core hardness of the roller and the inner-race samples were similar, the surface hardness of the roller was approximately 8.5 HRC units harder than that of the inner-race. SEM observations of the roller fracture surface revealed striations indicative of fatigue, and EDS analyses corroborated a high incidence of silicate inclusions at crack sites. The study suggests that the failure of the bearing occurred because the hardness difference between the roller bearing and the inner-race surfaces resulted in wear of the inner-race. The wear led to shaft misalignment and play during service. The misalignment, coupled with the presence of inclusions, caused fatigue failure of the roller bearing.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001778
EISBN: 978-1-62708-241-9
... to disintegration/failure of individual groups of wires. To understand the genesis of LCTR wire failures, a detailed metallurgical investigation of failed rope wires was made and included visual examination, optical microscopy, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Two types...
Abstract
A locked coil track rope (LCTR) is essentially composed of wires (round and rail-shaped) laid helically in different layers. These wire ropes are sometimes used in conveyors carrying empty and loaded buckets in mining areas. During service, such wire ropes may fail prematurely due to disintegration/failure of individual groups of wires. To understand the genesis of LCTR wire failures, a detailed metallurgical investigation of failed rope wires was made and included visual examination, optical microscopy, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Two types of failed wires were investigated; one is from a 40 mm diameter locked coil track rope and the other from a 53 mm locked coil track rope. Optical microscopy of failed round wires in the 53 mm diameter rope clearly revealed fully decarburized layers at the surface and a few grain-boundary cracks. From the location of the failure, it was clear that apart from static tensile loads, the wire ropes had been subjected to bending and unbending loads near the saddle, as fully loaded or empty buckets traveled access the conveyor. The SEM studies confirmed that the fracture had been caused by initiation of fatigue cracks in the decarburized zone under conditions of repeated bending and unbending stresses superimposed on the static tensile load.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001391
EISBN: 978-1-62708-215-0
... were selected for analysis, along with additional samples representing the various resistor failures. Visual examination revealed two different types of termination failures: total delamination and partial delamination. Electron probe microanalysis confirmed that the fracture occurred at the end...
Abstract
Several surface-mount chip resistor assemblies failed during monthly thermal shock testing and in the field. The resistor exhibited a failure mode characterized by a rise in resistance out of tolerance for the system. Representative samples from each step in the manufacturing process were selected for analysis, along with additional samples representing the various resistor failures. Visual examination revealed two different types of termination failures: total delamination and partial delamination. Electron probe microanalysis confirmed that the fracture occurred at the end of the termination. Transverse sections from each of the groups were examined metallographically. Consistent interfacial separation was noted. Fourier transform infrared and EDS analyses were also performed. It was concluded that low wraparound termination strength of the resistors had caused unacceptable increases in the resistance values, resulting in circuit nonperformance at inappropriate times. The low termination strength was attributed to deficient chip design for the intended materials and manufacturing process and exacerbated by the presence of polymeric contamination at the termination interface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001256
EISBN: 978-1-62708-218-1
... of foreign bodies, resulting from steel making/deoxidizing/teeming stages. The occasionally globular nature of the foreign particles suggested these were formed at the liquid condition of the steel. The ratio of Mn-Si as seen on electron probe microanalysis also suggested the globules high in Mn content...
Abstract
There was a large incidence of surface defects on the crank pins and journals and other areas of crank shafts of a high power automotive engine. The steel used was a Cr-Mo type of nitriding steel. Metallographic observations conclusively proved that the defective areas were entrapment of foreign bodies, resulting from steel making/deoxidizing/teeming stages. The occasionally globular nature of the foreign particles suggested these were formed at the liquid condition of the steel. The ratio of Mn-Si as seen on electron probe microanalysis also suggested the globules high in Mn content might have resulted in deoxidizing stage. Particularly the absence of Fe in some areas in the inclusion was indicative of precipitation deoxidation by ferromanganese/ferrosilicon. The defects apparently did not have time to coalesce and rise up to the top.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0049838
EISBN: 978-1-62708-222-8
..., with increased temperature stimulating formation of more intermetallic compound, initially by solid-state reaction but eventually in liquid phase reaction. Electron probe microanalysis provided in this case the necessary link between understanding events on a micrometer scale with those on a macroscopic scale...
Abstract
An electron probe microanalyzer was applied to the study of service failures (due to severe heating) of aluminum wire connections in residential electrical circuits. Perturbed regions in which the composition underwent a change during the failure were revealed by optical and scanning electron microscopy of the contacts. A sequence of iron-aluminum compositions that shift from the pure aluminum of the wire to the nearly pure iron of the screw was revealed by analyses of two distinct layers formed on the aluminum/iron region. The compositions were found to correspond to specific intermetallic compounds found in the aluminum-iron phase diagram. Similar compositional variations were noted at the aluminum/brass interface. It was concluded that the failure of the electrical junction due to extreme heating was related to the formation of intermetallic compounds at the current carrying interfaces. These intermetallics were established to have a high resistance causing significant resistive heating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091699
EISBN: 978-1-62708-219-8
.... However, an electron probe microanalysis performed on a microspecimen did not reveal any mercury at or near the cracks. Chemical analysis of the lithium bromide solution revealed significant quantities of nitrates in the solution. Such nitrates are normally added to the lithium bromide solution to act...
Abstract
Eddy-current inspection was performed on a leaking absorber bundle in an absorption air-conditioning unit. The inspection revealed crack-like indications in approximately 50% of the tubes. The tube material was phosphorus-deoxidized copper. Investigation (visual inspection, chemical analysis, 0.75x images, 2x macrographs after light acid cleaning to remove corrosion product, and 75x micrographs) supported the conclusion that the absorber tubes failed by SCC initiated by ammonia contamination in the lithium bromide solution. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046991
EISBN: 978-1-62708-234-1
..., which resulted from heating during welding. Electron probe x-ray microanalysis showed the outside surface of the tube did not have the protective chromium oxide scale normally found on Incoloy 800. The inside surface of the tube had a thin chromium oxide protective scale. This evidence supported...
Abstract
The outlet-piping system of a steam-reformer unit failed by extensive cracking at four weld locations. The welded system consisted of Incoloy 800 (Fe-32Ni-21Cr-0.05C) pipe and fittings. The exterior surfaces of the system were insulated with rock wool that did not contain weatherproofing. On-site visual examination and magnetic testing indicated severe external corrosion of most of the piping. The system showed extensive cracking in weld HAZ. One specimen indicated that corrosion extended to a depth of 3.2 mm and cracks were seen at the edge of the cover bead and in the HAZ of the weld. Metallographic examination showed that cracking was intergranular and that adjacent grain boundaries had undergone deep intergranular attack. Examination at higher magnification revealed heavy carbide precipitation, primarily at grain boundaries, indicating that the alloy had been sensitized, which resulted from heating during welding. Electron probe x-ray microanalysis showed the outside surface of the tube did not have the protective chromium oxide scale normally found on Incoloy 800. The inside surface of the tube had a thin chromium oxide protective scale. This evidence supported the conclusions that the deep oxidation greatly decreased the strength of the weld HAZ and cracking followed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046371
EISBN: 978-1-62708-234-1
... any stainless steel from the spacer. Other items for investigation were the nature of the bond between the galled spot and the inner cone and any evidence of overtempering or rehardening resulting from localized overheating. Analysis (visual inspection, electron probe x-ray microanalysis, microscopic...
Abstract
When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing had not seized, and there was no evidence of heat discoloration in the galled areas. The inner cone, made of modified 4720 steel and carburized for wear resistance, rode on an AISI type 630 (17-4 PH) stainless steel spacer. Consequently, it was desirable to determine whether the galled spots contained any stainless steel from the spacer. Other items for investigation were the nature of the bond between the galled spot and the inner cone and any evidence of overtempering or rehardening resulting from localized overheating. Analysis (visual inspection, electron probe x-ray microanalysis, microscopic examination, and hardness testing) supported the conclusions that galling had been caused by a combination of local overload and abnormal vibration of mating parts of the roller-bearing assembly. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046981
EISBN: 978-1-62708-218-1
.... Analysis (visual inspection, electron probe x-ray microanalysis, hardness testing, 4.5x fractograph) supported the conclusions that failure of the valve stem occurred by fatigue as a result of a combination of a nonuniform bending load, which caused a mild stress-concentration condition, and a high...
Abstract
The exhaust valve of a truck engine failed after 488 h of a 1000 h laboratory endurance test. The valve was made of 21-2 valve steel in the solution treated and aged condition and was faced with Stellite 12 alloy. The failure occurred by fracture of the underhead portion of the valve. Analysis (visual inspection, electron probe x-ray microanalysis, hardness testing, 4.5x fractograph) supported the conclusions that failure of the valve stem occurred by fatigue as a result of a combination of a nonuniform bending load, which caused a mild stress-concentration condition, and a high operating temperature in a corrosive environment. When the microstructure near the stem surface was examined, it was apparent that carbide spheroidization had occurred. Also, there was a coarsening of the carbide network within the austenite grains. The microstructure indicated that the underhead region of the valve was heated to about 930 deg C (1700 deg F) during operation. The cause of fatigue fracture, therefore, was a combination of non-uniform bending loads and overheating. No recommendations were made.
Image
in Galling Wear on a Steel Inner Cone of a Roller-Bearing Assembly
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Evidence of galling, or adhesive wear, on the inner surface of a carburized 4720 steel inner cone of a roller bearing. Galling was confirmed by the use of electron probe x-ray microanalysis.
More
Image
Published: 01 January 2002
Fig. 6 Schematic of a complete energy-dispersive x-ray spectrometer used in electron-probe x-ray microanalysis. Various pulse processing functions and the multichannel analyzer are shown. FET, field effect transistor
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001062
EISBN: 978-1-62708-214-3
..., molybdenum segregation was observed to be independent of mold thickness in the case of molybdenum-added steels. Fig. 9 Influence of molybdenum content and mold thickness on sulfur and molybdenum segregation on the fracture surface as measured by SIMS. Figure 10 shows the electron probe...
Abstract
The causes of internal cracking that occurred in 9% Ni steel castings during manufacture were investigated using a series of eight laboratory castings containing varying amounts of molybdenum. The effect of mold thickness was also investigated. The laboratory castings were subjected to three-point bend testing, and fracture surfaces were examined using SEM fractography, metallography, and depth analysis (SIMS) of the fracture surface. The cracks were found to originate at austenitic grain boundaries that coincided with primary dendrite interfaces. The cracking was attributed to a decrease in grain-boundary cohesion resulting from sulfur segregation. Addition of molybdenum proved effective in preventing cracking. The molybdenum promoted MnS precipitation in the grain and preferentially segregated to the interfaces.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001357
EISBN: 978-1-62708-215-0
... perpendicular to the crack plane. Creep indications were not present. Chemical Analysis/Identification Material Because of the lack of information about the chemical composition of the blade material, electron probe microanalysis was first conducted . The major elements found were nickel, chromium...
Abstract
Two 20 MW turbines suffered damage to second-stage blades prematurely. The alloy was determined to be a precipitation-hardening nickel-base superalloy comparable to Udimet 500, Udimet 710, or Rene 77. Typical protective coatings were not found. Test results further showed that the fuel used was not adequate to guarantee the operating life of the blades due to excess sulfur trioxide, carbon, and sodium in the combustion gases, which caused pitting. A molten salt environmental cracking mechanism was also a factor and was enhanced by the working stresses and by the presence of silicon, vanadium, lead, and zinc. A change of fuel was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001603
EISBN: 978-1-62708-228-0
... within the ferrite band, (b) flow contours in the HAZ, and (c) banded ferrite-pearlite structure in the PM Electron probe microanalysis (EPMA) studies were conducted to identify the type of inclusions embedded in the crack. Figure 3 shows a scanning electron image (SEI) photomicrograph...
Abstract
The genesis of failure of 6.1 mm thick electric resistance welded API 5L X-46 pipes during pretesting at a pressure equivalent to 90% of specified minimum yield strength was investigated. Cracks were found to initiate on the outer surface of the pipes in the fusion zone and propagate along the through-thickness direction. The presence of extensive decarburization and formation of a soft ferrite band within the fusion zone may have contributed to the nucleation of the cracks. Crack propagation was aided by the presence of exogenous inclusions entrapped within the fusion zone. Analysis of these inclusions confirmed the presence of Fe, Si, Ca, and O, indicating slag entrapment to be the most probable culprit.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
1