Skip Nav Destination
Close Modal
Search Results for
electromagnetic forming
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 27 Search Results for
electromagnetic forming
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001622
EISBN: 978-1-62708-222-8
... in the form of a tan haze Analysis of the coin by EDS showed slightly greater amounts of aluminum and magnesium in the stained area as compared with the nonstained region. Some carbon and oxygen were detected in both areas, which may be suggestive of organic substances. The nonstained and stained...
Abstract
A stamped coin exhibited visible discolored areas, seen as a tan haze on the surface. The discoloration was considered merely cosmetic. The nonstained and stained regions were studied using SEM/EDS. Greater amounts of aluminum and magnesium were found in the stained area as compared with the nonstained region. Some carbon and oxygen were detected in both areas, which may be suggestive of organic substances. Fourier transform infrared spectroscopy (FTIR) revealed traces of hydrocarbons and ether/alcohol materials in the stained area, suggesting that the stain was associated with a cellulose or carbohydrates (sugars). These findings, along with the appearance, suggest that a sugar-containing substance, such as coffee or a soft drink, dried onto the surface of this coin and caused the observed discoloration.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001798
EISBN: 978-1-62708-241-9
...Abstract Abstract The crosslinked epoxy resin encapsulant protecting an electromagnetic valve coil failed during long-term storage and was examined to determine the cause. The investigation included fault-tree analysis, FTIR and EDX spectroscopy, and differential scanning calorimetry...
Abstract
The crosslinked epoxy resin encapsulant protecting an electromagnetic valve coil failed during long-term storage and was examined to determine the cause. The investigation included fault-tree analysis, FTIR and EDX spectroscopy, and differential scanning calorimetry with thermogravimetric analysis. Based on test data, the epoxy resin had not been properly cured and was hydrolyzed in its compromised state because of humidity. Hence, the depolymerized material gradually softened to the point where the effect of creep caused it to flow, ultimately causing the failure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... be applied either in through-transmission two sides or reflection mode single side. Good sensitivity in acoustically clear material All metals and alloys, sintered carbides, glass and ceramics, rubber, structural plastics, concrete Electromagnetic testing Measures impedance of coil close to conductive...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
... of electromagnetic induction and is sensitive to the electrical conductivity and magnetic permeability of conductive materials. Eddy current evaluation technique can be applied on both conductive and nonconductive materials depending upon their permeability: however; the permeability must not be equal to one...
Abstract
A deformed steel tube was received for failure analysis after buckling during a heat-treat operation. The tube was subjected to various metallurgical tests as well as nondestructive testing to confirm the presence of residual stresses. The microstructure of the tube was found to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... by the electron gun and focused and controlled by a series of electromagnetic lenses and coils. The resultant beam is collimated and defined by various apertures placed in the beam path. Fig. 1 Schematic showing the general layout of a typical scanning electron microscope The electron gun consists...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... the target material and the sample. The target material is negatively biased with respect to the sample. The presence of the electric field causes an argon plasma to form, producing argon ions. These positive ions bombard the negative target, knocking off atoms of gold (or another target material...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001527
EISBN: 978-1-62708-224-2
...:1.26, respectively. Lubricants The lubricant applied to wire ropes also provides a measure of corrosion resistance in relatively benign service environments. For enhanced corrosion resistance, wire rope is available in a galvanized form, but with a 10% reduction in mechanical strength from...
Abstract
Mechanical properties of wire ropes, their chemical composition, and the failure analysis process for them are described. The wires are manufactured from high-carbon, plain carbon steel, with high-strength ropes most often manufactured from AISI Grade 1074. During visual failure examination, the rope, strand, and wire diameters should all be measured. Examination should also address the presence or absence of lubricant, corrosion evidence, and gross mechanical damage. Failed wires can exhibit classic cup-and-cone ductile features, flat fatigue features, and various appearances in-between. However, wires are often mechanically damaged after failure. Most nondestructive evaluation (NDE) techniques are not applicable to wire rope failures. Electron microscope fractography of fracture surfaces is essential in failure analysis. Fatigue is the most important fracture mode in wire ropes. Metallographic features of wire ropes that failed because of ductile overload and fatigue are described.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006758
EISBN: 978-1-62708-295-2
.... The surface roughness of a part is needed to assess if and what type of PT method can be used. Surface roughness may also affect other NDE methods that require contact with the part such as UT, ET and MT. Material properties such as electromagnetic characteristics are also important to determine if MT and ET...
Abstract
The goal of using nondestructive evaluation (NDE) in conjunction with failure analysis is to obtain the most comprehensive set of data in order to characterize the details of the damage and determine the factors that allowed the damage to occur. The NDE results can be used to determine optimal areas upon which to focus for sectioning and metallography in order to further investigate the condition of the component. This article provides information on the inspection method available for failure analysis, including standard methods such as visual testing, penetrant testing, and magnetic particle testing. It covers the effects of various factors on the properties of the part that may impact failure analysis, describes the characterization of damage modes and crack sizes, and finally discusses the processes involved in application of NDE results to failure analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001680
EISBN: 978-1-62708-221-1
..., and corrosion, and 2) localized faults (LF) such as broken wires. Electromagnetic instruments have been designed for LMA and LF testing, but have a finite spacial resolving power. By examining broken wires, the parameters for retirement indirectly address fatigue, which is a serious factor in the useful...
Abstract
The fatigue failure of a wire rope used on a skip hoist in an underground mine has been studied as part of the ongoing research by the Bureau of Mines into haulage and materials handling hazards in mines. Macroscopic correlation of individual wire failures with wear patterns, fractography, and microhardness testing were used to gain an understanding of the failure mechanism. Wire failures occurred predominantly at characteristic wear sites between strands. These wear sites are identifiable by a large reduction in diameter; however, reduction in area was not responsible for the location of failure. Fractography revealed multiple crack initiation sites to be located at other less noticeable wear sites or opposite the characteristic wear site. Microhardness testing revealed hardening, and some softening, at wear sites.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... wear situations, the white layer in one body can be entirely made up of material transferred from the second body. Subsurface regions form on both impacting bodies and grow very quickly, within a few hundred impacts ( Ref 8 ). Once formed, the white layer and the deformation zone maintain a steady...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... it is desirable to examine the nuts and other associated parts that may have contributed to the failures. Also, in failures involving corrosion, stress-corrosion, or corrosion fatigue, a sample of the fluid that has been in contact with the metal, or of any deposits that have formed, will often be required...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
..., displacements, temperatures, vibrations, and other service-related factors that the part experiences. It may also include numerous analytical, classical, and computer techniques that are available to assist in a structural design failure analysis. A traditional closed-form analytical technique such as beam...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... experiences. It may also include numerous analytical, classical, and computer techniques that are available to assist in a structural design failure analysis. A traditional closed-form analytical technique, such as beam analysis or plate theory, provides a simple and quick way to estimate stresses...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... that must be considered is the presence of a third-body material. This may be in the form of a lubricant applied to help mitigate a wear or friction problem ( Ref 4 ), or in the form of wear debris, or something there naturally as part of the operating environment, such as sand ( Ref 5 , 6 ). Deformation...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... material (powder or wire) to form a metallurgical bond with a substrate (in the case of DED) and/or the previous layer (for either PBF or DED). The typical power sources for melting are lasers and electron beams, but conventional arcs and indiscriminate (phase-incoherent) electromagnetic energy also...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... for Electromagnetic Examination of Ferromagnetic Steel Wire Rope ,” E 1571-11(2016)e1, ASTM International , West Conshohocken, PA , 2016 , www.astm.org 4. “ Standard Specification for Carbon Steel Chain ,” A 413/A 413M-07(2012), ASTM International , West Conshohocken, PA , 2012 , www.astm.org 5...
Abstract
The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001459
EISBN: 978-1-62708-234-1
... researches of Wöhler 3 , were published that engineers in general began to appreciate the importance not only of fluctuations in stress but also of changes of form that gave rise to stress concentrations. The “fatigue” aspect of design became of increasing importance with the arrival of the high speed steam...
Abstract
Fundamentals of fatigue failure are outlined. Addressed are fatigue crack characteristics, basic crack types, unidirectional bending, alternate bending, rotary bending, torsion, direct stress, and combined stress. Stress cycle, endurance limits, under and overstressing, stress concentration, and surface condition are discussed. Sections are devoted to fatigue crack assessment, corrosion relation to fatigue failure, and the micro-mechanisms of fatigue failure. Materials considered include steels. Photographs of service failures are used to illustrate features alluded to in the text.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
...” occurred at a later stage after crack “A” had formed, and that crack “B” was arrested at the prior crack. Fig. 1 Intersection of two cracks. Crack “B” has been arrested at crack “A,” which occurred first. In the case of fracture surfaces, it is important to record if these are macroscopically...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... acid etch Fig. 39 Stress-corrosion cracking in a 316 stainless steel orthopedic implant Fig. 40 Hydrogen-induced cracking in pipeline steel Fig. 41 Voids formed by methane in a carbon steel exposed to a hydrogen atmosphere at high temperature. The carbides in the pearlite...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
.... They are all customer focused and are founded on problem solving as a means for improvement. When addressing customer focus, producers and other organizations have identified that the form, fit, function, and service-life requirements of a product or system are actually defined ultimately by customers...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.