1-20 of 51 Search Results for

electrode diameter

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047673
EISBN: 978-1-62708-217-4
... marks off to one side of the spot weld, suggesting improper electrode contact. Visual examination of the weld fractures showed that the weld nuggets varied considerably in size, some being very small and three exhibiting an HAZ but no weld. Of 28 welds, only nine had acceptable nugget diameters...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047586
EISBN: 978-1-62708-236-5
... weld was attributed to unfavorable welding practice that accentuated thermal contraction stresses and caused hot tearing. Recommendations involved use of a small-diameter welding electrode, a lower heat input, and deposition in shallow layers that could be effectively peened between passes to minimize...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... weld travel speed Absence of preheat or postheat Low interpass temperature Poor weld profile Poor electrode manipulation Thin weld-bead cross section (particularly in the first pass) Improper fit-up Low weld current Small electrode diameter Improper polarity Improper joint...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001599
EISBN: 978-1-62708-236-5
...Abstract Abstract Failure of a pilot scale test melter resulted from severe overheating of an Inconel 690 (690) jacketed molybdenum electrode. Extreme temperatures were required to melt the glass during this campaign because the feed material contained a very high waste loading. Metallurgical...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047537
EISBN: 978-1-62708-228-0
... using standard vertical down stove pipe-welding procedures with E7010 cellulosic electrodes. The crack started partially as a result of incomplete fusion on the pipe side wall, which in turn was a result of misalignment of the two pipes. The crack was typical of hydrogen cracking. Girth welds can...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
..., number of passes, inter-pass temperature, pre-heating, post-heating, electrode diameter and restraint during welding. Table 1 summarizes the main welding parameters used to obtain the joint. Welding parameters used to weld nozzle assembly Table 1 Welding parameters used to weld nozzle assembly...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001560
EISBN: 978-1-62708-217-4
...-01-77 tensile test specifications with the exception of the gage length diameter. Due to the maximum load limitations of the Instron, the gage diameter was reduced from 6.4mm to 5.1mm. The gage length was 25.4mm. Test specimens were machined to final dimensions from 13mm bar stock (AISI 4340...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001159
EISBN: 978-1-62708-232-7
... part are connected by means of welding with austenitic electrodes to the unalloyed mild steel pipe of larger diameter. Such damage did not occur in the warmer zone at similar connections. Figure 1 shows a leaky connection. The seam is cracked on the side of the thicker mild steel pipe...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001514
EISBN: 978-1-62708-218-1
... completely away from the channel. Examination of the welds showed that the welds were defective. In the ten mounting bracket weldments which were examined there was inadequate penetration and lack of fusion. This was a consequence of poor welding procedure in which an electrode with too large a diameter...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001393
EISBN: 978-1-62708-230-3
... identical vessels at the same location, cracking in course of development was discovered during internal inspection. Fig. 1 View of part of devastation caused by the explosion The accumulator in the first case was built in 1920. It was approximately 13 ft. diameter, 52 ft. 6 in. long...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001565
EISBN: 978-1-62708-230-3
... A 4 1 2 -inch diameter stainless steel pipe transferring hot white liquor solution of sodium hydroxide and sodium sulfite, developed leaks adjacent to the welds within 4 years of service. The stainless steel pipe was AISI type 304 and welded with E308 weld electrodes. The service temperature...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001525
EISBN: 978-1-62708-220-4
...Abstract Abstract Welded steel storage vessels used to hold mildly alkaline solution were produced in exactly the same manner from deep-drawn aluminum-killed SAE 1006 low-carbon steel sheet. After the cylindrical shell was drawn, a top low-carbon steel closure was welded to the inside diameter...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
.... The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001065
EISBN: 978-1-62708-214-3
...Abstract Abstract A 460 mm (18 in.) diam suction line to the main feed water pump for a nuclear power plant failed in a violent, catastrophic manner. Samples of pipe, elbow, and weld materials (ASTM A106 grade B carbon steel, ASTM A234 grade WPB carbon steel, and E7018 carbon steel electrode...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001702
EISBN: 978-1-62708-219-8
... with 1.3 cm (0.5 in) diameter shear stirrups spaced along the length of the beam. The steel rebar was fabricated by Mercer Steel Company and had a tensile strength of approximately 556 MPa (80.7 ksi). The beam concrete was prepared according to the mix design given in Table 1 . The coarse aggregate...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001432
EISBN: 978-1-62708-221-1
... of the welding process, electrodes, size of runs, electrical parameters and pre- or post-heat. The adequacy of the procedure is then demonstrated by a practical test involving both NDT and destructive test involving both competence of welders subsequently employed on the job must also be assessed by carrying out...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001430
EISBN: 978-1-62708-236-5
... of the base material, shape of the weld preparation and the welding procedure which involves choice of the welding process, electrodes, size of runs, electrical parameters and pre- or post-heat. The adequacy of the procedure is then demonstrated by a practical test involving both NDT and destructive test...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... 26.7 Leak (a) M T , bulging correction for an axial through-wall flaw. (b) M p , bulging factor for part-through flaw Fig. 23 Scatter bands for Charpy V-notch impact specimens from 19 random pipe lengths through which a fracture propagated in a 762-mm (30-in.) outside-diameter...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
...; those indicated by a black rectangle were tested in low-velocity or poorly aerated water and at shielded areas may become active and exhibit a potential near −0.5 V. SCE, saturated calomel electrode. Adapted from Ref 2 Although the measurement of potentials has limitations as previously noted...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046044
EISBN: 978-1-62708-235-8
...Abstract Abstract A rocket-motor case made of consumable-electrode vacuum arc remelted D-6ac alloy steel failed during hydrostatic proof-pressure testing. Close visual examination, magnetic-particle inspection, and hardness tests showed cracks that appeared to have occurred after austenitizing...