Skip Nav Destination
Close Modal
Search Results for
electrode
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 139
Search Results for electrode
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure Analysis of a Pilot Scale Melter
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Image
Dealuminification of a cast aluminum bronze furnace electrode pressure ring...
Available to PurchasePublished: 01 January 2002
Fig. 43 Dealuminification of a cast aluminum bronze furnace electrode pressure ring exposed to recirculating cooling water (pH = 7.8 to 8.3, conductivity = 1000 to 1100 μS). The preferentially attacked γ phase left behind a residue of copper (darkened regions in eutectoid and along grain
More
Image
Dealuminification of a cast aluminum bronze furnace electrode pressure ring...
Available to PurchasePublished: 15 January 2021
Fig. 43 Dealuminification of a cast aluminum bronze furnace electrode pressure ring exposed to recirculating cooling water (pH = 7.8 to 8.3, conductivity = 1000 to 1100 μS). The preferentially attacked γ phase left behind a residue of copper (darkened regions in eutectoid and along grain
More
Image
Guarded three-terminal parallel-plate electrode system showing flux lines b...
Available to Purchase
in Electrical Testing and Characterization of Plastics
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 3 Guarded three-terminal parallel-plate electrode system showing flux lines between electrodes. Reprinted, with permission, from Ref 5
More
Image
in Electrical Testing and Characterization of Plastics
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 5 Micrometer electrode system. Adapted from Ref 1 , 2
More
Image
Guarded three-terminal electrode system for measuring volume and surface re...
Available to Purchase
in Electrical Testing and Characterization of Plastics
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 8 Guarded three-terminal electrode system for measuring volume and surface resistance or conductance of flat specimens. g ≤ 2 t volume resistivity, g ≥ 2 t surface resistivity. Reprinted, with permission, from Ref 9
More
Image
Guarded three-terminal electrode assembly for measuring volume and surface ...
Available to Purchase
in Electrical Testing and Characterization of Plastics
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 9 Guarded three-terminal electrode assembly for measuring volume and surface resistance or conductance of tubular specimens. D 0 = ( D 1 + D 2 )/2; L > 4 t ; g ≤ 2 t volume resistivity, g ≥ 2 t surface resistivity. Reprinted, with permission, from Ref 9
More
Image
Section of the transverse weld. Electrode slags. Etch: oxalic acid 10%. 10 ...
Available to Purchase
in Intercrystalline Corrosion of Welded Stainless Steel Pipelines in Marine Environment
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 3 Section of the transverse weld. Electrode slags. Etch: oxalic acid 10%. 10 ×
More
Image
in Failure Analysis of a Pilot Scale Melter
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 1 Schematic showing the melter and electrode before and after the failure
More
Image
(a) Cross section of electrode assembly just behind melted end of sheath. A...
Available to Purchase
in Failure Analysis of a Pilot Scale Melter
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 5 (a) Cross section of electrode assembly just behind melted end of sheath. A thin glass layer is shown between the molybdenum electrode and the 690 sheath (see arrow). (b) SEM of glass layer. Alloying between the molybdenum and nickel was not present in this region.
More
Image
Specimen sectioned from melted end on 690 electrode sheath. (a) Light area ...
Available to Purchase
in Failure Analysis of a Pilot Scale Melter
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 6 Specimen sectioned from melted end on 690 electrode sheath. (a) Light area around outer edge shows melted 690. Molybdenum was not found in this region. (b) Extremely large grains in excess of 0.13 cm were common in this region.
More
Image
SEM of the molybdenum electrode. EDX spectra indicated the presence of anti...
Available to Purchase
in Failure Analysis of a Pilot Scale Melter
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 7 SEM of the molybdenum electrode. EDX spectra indicated the presence of antimony on the surface of the electrode (see arrows). Nickel from the Inconel sheath was also present.
More
Image
SEM of the molybdenum electrode. EDX spectra indicated the presence of anti...
Available to Purchase
in Failure Analysis of a Pilot Scale Melter
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 8 SEM of the molybdenum electrode. EDX spectra indicated the presence of antimony on the grain boundaries (see arrow). Nickel from the Inconel sheath was also present.
More
Image
Typical examples of fissures; (a) and (c) bare wire, (b) covered, electrode...
Available to Purchase
in Corrosion-Fatigue Cracking in Steam Accumulators
> ASM Failure Analysis Case Histories: Pulp and Paper Processing Equipment
Published: 01 June 2019
Fig. 4 Typical examples of fissures; (a) and (c) bare wire, (b) covered, electrodes × 1 1 4
More
Image
Taper-pin electrodes for measuring the insulation resistance of (a) plate, ...
Available to Purchase
in Electrical Testing and Characterization of Plastics
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 7 Taper-pin electrodes for measuring the insulation resistance of (a) plate, (b) tube, and (c) rod specimens; min, minimum. Reprinted, with permission, from Ref 9
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001599
EISBN: 978-1-62708-236-5
... Abstract Failure of a pilot scale test melter resulted from severe overheating of an Inconel 690 (690) jacketed molybdenum electrode. Extreme temperatures were required to melt the glass during this campaign because the feed material contained a very high waste loading. Metallurgical evaluation...
Abstract
Failure of a pilot scale test melter resulted from severe overheating of an Inconel 690 (690) jacketed molybdenum electrode. Extreme temperatures were required to melt the glass during this campaign because the feed material contained a very high waste loading. Metallurgical evaluation revealed the presence of an alloy containing nickel and molybdenum in several ingots found on the bottom of the melter and on a drip which had solidified on the electrode sheath. This indicates that a major portion of the electrode assembly was exposed to a temperature of at least 1317 deg C, the nickel/molybdenum eutectic temperature. Small regions on the end of the 690 sheath showed evidence of melting, indicating that this localized region exceeded 1345 deg C, the melting point of 690. In addition to nickel, antimony was found on the grain boundaries of the molybdenum electrode. This also contributed to the failure of the electrode. The source of the antimony was not identified but is believed to have originated from the feed material. Metallurgical evaluation also revealed that nickel had attacked the grain boundaries of the molybdenum/tungsten drain valve. This component did not fail in service; however, intergranular attack led to degradation of the mechanical properties, resulting in the fracture of the drain valve tip during disassembly. Antimony was not observed on this component.
Book Chapter
Intergranular Cracking in Heat-Exchanger Welds Due to Hot Shortness
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048751
EISBN: 978-1-62708-235-8
... to the weld seam, were revealed by metallographic examination (hot shortness). It was indicated by energy-dispersive spectroscopy that type 316 electrode was not used for the root pass and instead a nickel-copper alloy electrode was employed. It was thus concluded that cracking was caused due to the use...
Abstract
The presence of subsurface cracks in a longitudinal weld seam of an AISI type 316 stainless steel heat-exchanger shell was revealed by radiographic testing. Numerous intergranular cracks associated with the root pass of the weld, which had propagated both parallel and normal to the weld seam, were revealed by metallographic examination (hot shortness). It was indicated by energy-dispersive spectroscopy that type 316 electrode was not used for the root pass and instead a nickel-copper alloy electrode was employed. It was thus concluded that cracking was caused due to the use of an incorrect electrode for the root pass as these electrodes are crack sensitive if overheated. The weld seam was completely ground out and replaced with the correct electrode material as a corrective measure.
Book Chapter
Failure of Resistance Spot Welds in an Aircraft Drop Tank Because of Poor Fit-Up
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047673
EISBN: 978-1-62708-217-4
... Abstract A series of resistance spot welds joining Z-shape and C-shape members of an aircraft drop-tank structure failed during ejection testing. The members were fabricated of alclad aluminum alloy 2024-T62. The back surface of the C-shape members showed severe electrode-indentation marks off...
Abstract
A series of resistance spot welds joining Z-shape and C-shape members of an aircraft drop-tank structure failed during ejection testing. The members were fabricated of alclad aluminum alloy 2024-T62. The back surface of the C-shape members showed severe electrode-indentation marks off to one side of the spot weld, suggesting improper electrode contact. Visual examination of the weld fractures showed that the weld nuggets varied considerably in size, some being very small and three exhibiting an HAZ but no weld. Of 28 welds, only nine had acceptable nugget diameters and fusion-zone widths. The weld deficiencies were traced to problems in forming and fit-up of the C-shape members and to difficulties in alignment and positioning of the weld tooling. The failure of the resistance spot welds was attributed to poor weld quality caused by unfavorable fit-up and lack of proper weld-tool positioning. The problem could be solved by better forming procedures to provide an accurate fit-up that would not interfere with electrode alignment.
Book Chapter
Brittle Fracture of a Soybean-Oil Storage Tank Caused by High Service Stresses
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047508
EISBN: 978-1-62708-221-1
... and drilled for bolting on a heavy steel plate. The tank was filled to a record height. In mid-Jan the temperature dropped to -31 deg C (-23 deg F), with high winds. The tank split open and collapsed. The welding used the shielded metal arc process with E6010 electrodes, which could lead to weld porosity...
Abstract
A riveted 0.25% carbon steel oil-storage tank in Oklahoma was dismantled and reassembled in Minnesota by welding to form a storage tank for soybean oil. An opening was cut in the side of the tank to admit a front-end loader. A frame of heavy angle iron was welded to the tank and drilled for bolting on a heavy steel plate. The tank was filled to a record height. In mid-Jan the temperature dropped to -31 deg C (-23 deg F), with high winds. The tank split open and collapsed. The welding used the shielded metal arc process with E6010 electrodes, which could lead to weld porosity, hydrogen embrittlement, or both. At subzero temperatures, the steel was below its ductile-to-brittle transition temperature. These circumstances suggest a brittle condition. Steps to avoid this type of failure: For cold conditions, the steel plate should have a low carbon content and a high manganese-to-sulfur ratio and be in a normalized condition, low-hydrogen electrodes and welding practices should be used, all corners should be generously radiused, the welds should be inspected and ground or dressed to minimize stress concentrations, postweld heating is advisable, and radiographic and penetrant inspection tests should be performed.
Book Chapter
Cracking of a Field Girth Weld
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047537
EISBN: 978-1-62708-228-0
... standard vertical down stove pipe-welding procedures with E7010 cellulosic electrodes. The crack started partially as a result of incomplete fusion on the pipe side wall, which in turn was a result of misalignment of the two pipes. The crack was typical of hydrogen cracking. Girth welds can be made using...
Abstract
During the construction of a large-diam pipeline, several girth welds had to be cut out as a result of radiographic interpretation. The pipeline was constructed of 910 mm (36 in.) diam x 13 mm (0.5 in.) wall thickness grade X448 (x65) line pipe. The girth welds were fabricated using standard vertical down stove pipe-welding procedures with E7010 cellulosic electrodes. The crack started partially as a result of incomplete fusion on the pipe side wall, which in turn was a result of misalignment of the two pipes. The crack was typical of hydrogen cracking. Girth welds can be made using cellulosic electrodes. For high-risk girth welds, an increase in preheat and/or a reduction in the local stress by controlling lift height or depositing the hot pass locally before lifting may be required.
1