1-20 of 73 Search Results for

dynamic nucleation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049797
EISBN: 978-1-62708-235-8
... Abstract An AISI 4340 threaded steel connecting rod that was part of a connecting linkage used between a parachute and an instrumented drop test assembly fractured under high dynamic loading when the assembly was dropped from an airplane. A large flaw that originated from the root of a machined...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046155
EISBN: 978-1-62708-233-4
... was the primary cause of failure. Rubbing of the faying surfaces worked the interference area on the post until small tears developed. These small tears became stress-concentration points that nucleated fatigue cracks. Recommendations included rounding the edge of the box in the area of contact with the post...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001673
EISBN: 978-1-62708-227-3
... of the corroded cupronickel alloy. This micrograph reveals that many crystals nucleated and that growth was preferentially into the corroding medium because of voids at the alloy surface where no crystal nucleation was present. Etched micrographs (potassium dichromate) revealed the presence of twin boundaries...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046972
EISBN: 978-1-62708-217-4
... halfway from the leading edge to the trailing edge on the concave surface before ultimate failure occurred in dynamic tension. Analysis (including visual inspection, SEM, and 250x/500x micrographic examination) supported the conclusions that the blades failed due to thermal fatigue. Recommendations...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001531
EISBN: 978-1-62708-231-0
..., and ductility are mainly determined by the carbon content of wheel steels. The fatigue crack growth resistance is insensitive to composition and microstructure, while the fatigue crack initiation life increases with the decrease of austenite grain size and pearlite colony size. The dynamic fracture toughness...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001603
EISBN: 978-1-62708-228-0
... along the through-thickness direction. The presence of extensive decarburization and formation of a soft ferrite band within the fusion zone may have contributed to the nucleation of the cracks. Crack propagation was aided by the presence of exogenous inclusions entrapped within the fusion zone...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001200
EISBN: 978-1-62708-221-1
... in Fig. 7 . It is clear that this is an improvement over the previous one ( Fig. 6 ), but not as yet perfect. A further improvement could be achieved by inocculation of finely powdered ferrosilicon into the melt to facilitate nucleation and avoid supercooling. Fig. 7 Thin-walled part of reinforced...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... Abstract This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... concepts. bending brittle fracture compression failure deformation ductile crack nucleation ductile fracture ductility fractography manufacturing imperfections metals microvoid coalescence notched specimen plastic flow root cause failure analysis single-crystal cleavage models specimen...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... IMPACT, OR PERCUSSIVE, WEAR has been defined as “the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body” ( Ref 1 ). This is a restricted definition that distinguishes impact wear from erosive wear, which occurs by impact of streams...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... preparation for optical microscopy and SEM observation (though the etchant in this case was a 20 g picric acid and 100 mL chloridic acid reagent), while the hardness tests were performed on Rockwell B scale, because of the lower hardness. The petrochemical industry is one of the most dynamic segments...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001807
EISBN: 978-1-62708-241-9
... ( 2012 ) 10.1016/j.ijfatigue.2012.06.012 3. Farshid S. , Behrooz J. , Trevor S.S. et al. , A review of rolling contact fatigue . J. Tribol. 131 , 1–15 ( 2009 ) 4. Lundberg G. , Palmgren A. , Dynamic capacity of rolling bearings . Acta Polytech. Scand. Mech...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... Abstract Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... to a better understanding of both crack nucleation in regions of localized strain and the subsequent crack growth mechanisms outside the plastic zone in the qualification of component designs or to conduct failure analyses. Infinite-Life Criterion (<italic>S</italic>-<italic>N</italic> Curves) The safe...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001817
EISBN: 978-1-62708-241-9
... to the wires at the other end, with the sheave being prevented from rotating around its center. As shown in Fig. 12 , the analysis was carried out in two steps. At the first step, using appropriate boundary conditions, the straight wire rope was bent around the sheave, while at the second step, the dynamic...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006918
EISBN: 978-1-62708-395-9
... Optical micrographs showing the nucleation and growth of a mode I fatigue crack in the plane of the notch as a result of cyclic compression loading in high-impact polystyrene; (a) crazing before fatigue cycling, (b) nucleation of fatigue crack after 15,000 cycles, (c) crack growth after 20,000 cycles...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... cracking in a jet-engine turbine blade. Courtesy of J. Schijve Cavitation Damage The most common form of microstructural change is the accumulation of nucleation and growth of voids. Void growth is well understood, because voids grow by the same mechanisms that cause creep deformation...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... the dynamics of a fracture event (quasi-static versus dynamic/impact loading) In this article, the basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances (as sometimes affected by the microstructure). More in-depth...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... is well preserved and if the analyst is knowledgeable, the fracture appearance reveals details of the loading events that culminated in fracture. An understanding of how cracks nucleate and grow microscopically to cause bulk (macroscale) fracture is an essential part of fractography. The ability...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... was secondary• Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) • Load exceeded the dynamic strength of the part• Check for proper alloy and processing as well as proper toughness, grain size• Loading direction may show failure was secondary or impact induced• Low...