Skip Nav Destination
Close Modal
Search Results for
dye penetrant testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 112 Search Results for
dye penetrant testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure Analysis of HAZ Cracking in Low C-CrMoV Steel Weldment
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in Stress-Corrosion Cracking of a Ship Propeller Tap Bolt
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Image
in Analysis of Mercury Diffusion Pumps
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Analysis of Mercury Diffusion Pumps
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Analysis of Mercury Diffusion Pumps
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Analysis of Mercury Diffusion Pumps
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Cracking of Furnace Rings of Horizontal Multi-Tubular Boiler
> ASM Failure Analysis Case Histories: Rail and Rolling Stock
Published: 01 June 2019
Image
in Failure Analysis of AISI-304 Stainless Steel Styrene Storage Tank
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 2 Pictures of ( a ) Dye Penetrant test results showing cracks in weld bead and HAZ, and ( b ) radiographs of weldments showing cracks in circumferentially welded joint and adjacent area
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006428
EISBN: 978-1-62708-217-4
..., 217, and 250. Scanning electron microscopy (SEM) examination of the fractures showed that failure initiated by SCC or a corrosion pit on all failures examined. The failures then progressed by fatigue. Dye penetrant testing revealed no additional flaws on the wheels that had failed in the flange area...
Abstract
Four nose wheels fabricated from 2014-T6 aluminum alloy and cold worked at the flange were examined. Visual examination showed that the failure started in the tube well area on the wheel with serial number 31. The failure initiated in the flange fillet on wheels with serial numbers 67, 217, and 250. Scanning electron microscopy (SEM) examination of the fractures showed that failure initiated by SCC or a corrosion pit on all failures examined. The failures then progressed by fatigue. Dye penetrant testing revealed no additional flaws on the wheels that had failed in the flange area. There was, however, one flaw area in the flange of the wheel that failed in the tube well. This flaw resembled a corrosion pit. It was concluded that failure of nose wheels 67, 217, and 250 was caused by cracking due to SCC or pitting. The failures progressed by fatigue. Because failure occurred in the same general area on all three wheels, these locations are suspect as being underdesigned. It was recommended that the nose wheel be redesigned and additional service data be accumulated to understand the contributing factors that resulted in wheel failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001679
EISBN: 978-1-62708-229-7
... removed from service, one in 1988 and one in 1990. Dye-penetrant testing revealed approximately 12 cracks around the necked portion of each stage ( Figures 2 and 3 ). A full destructive examination of both the 1988 MP and the 1990 MP stages has been conducted. Fig. 2 Dye-Penetrant Test from 1988...
Abstract
Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. Six stages [two machined (MP) and four electron beam (EB) welded] from the mercury diffusion pumps operating in the Tritium Purification process at SRS have been analyzed to determine their condition after nine months of usage. Several cracks were found around the necked region of the two MP stages. The EB welded stages, however, seemed to perform better in service; only two of four stages showed cracking. The cracking is caused by fatigue that has been enhanced by high stresses and tritium in the flange area. The EB welded stage appears to be a step in the right direction. Since the EB weld is a shrink fit, the surface is in compression, thereby eliminating crack propagation. In addition, shot peening has been employed to produce a compressive material surface since fatigue usually originates at the surface. Pitting was observed down the throat of the venturi. This pitting was caused by cavitation and erosion along the length of the venturi tube. Corrosion and pitting was seen on the exterior walls of the diffuser tubes. Stress-corrosion cracks were observed emanating from these corrosion pits. The corrosion likely occurred from the chloride ions present in the process cooling water. Shot peening is now being used in an attempt to place the outside of the diffuser tube in compression to eliminate the stress-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001068
EISBN: 978-1-62708-214-3
... and two dished ends. Before the second dished end was attached, the tank surfaces were cleaned and passivated. Fig. 1 Diagram of tank. Dimensions are in millimeters. After fabrication, gamma radiography and dye penetrant testing revealed no defects in any of the tanks. Following hydrostatic...
Abstract
Four tanks made from type 304L stainless steel were removed from storage. Atmospheric corrosion on the outside of the tanks and pitting and crevice corrosion on the inside were visible. Metallographic examination revealed that the internal corrosion had been caused by crevices related to weld spatter and uneven weld deposit and by service water that had not been drained after hydrostatic testing. External corrosion was attributed to improper passivation. It was recommended that the surfaces be properly passivated and that, before storage, the interiors be rinsed with demineralized water and dried.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001352
EISBN: 978-1-62708-215-0
... not be carried out at the location nearest to failure. A similar martensitic austenitic stainless steel weld, available on the other junction of the ball and stem at location C ( Fig. 2 ) was used for detailed metallographic examination. The weld was checked by dye penetrant testing, which revealed some defects...
Abstract
Repeated failures of high-pressure ball valves were reported in a chemical plant. The ball valves were made of AFNOR Z30C13 martensitic stainless steel. Initial examination of the valves showed that failure occurred in a weld at the ball/stem junction end of austenitic stainless steel sleeves that had been welded to the valve stem at both ends. Metallographic examination showed that a crack had been introduced into the weld by improper weld heat treatment. Stress concentration at the weld location resulting from an abrupt change in cross section facilitated easy propagation of the crack during operation. Proper weld heat treatment was recommended, along with avoidance of abrupt change in cross section near the weld. Due penetrant testing at the ball stem junction before and after heat treatment was also suggested.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001392
EISBN: 978-1-62708-231-0
.... Fig. 1 Cracking on fire-side of furnace ring as revealed by dye-penetrant test Microscopical examination of specimens taken to include sections through the cracks showed them to be filled with oxide and to be of the multi-branched type, having blunt terminations — a typical example being seen...
Abstract
Following leakage which developed within the furnace of a horizontal multi-tubular type boiler, examination revealed a series of cracks adjacent to the stiffening rings in the first plain furnace ring. The fire-side surface of the sample was coated with a layer of oxide scale. Microscopical examination of sections through the cracks showed them to be filled with oxide and to be of the multi-branched type, having blunt terminations. The general nature of the cracks was characteristic of cracking from thermal or corrosion fatigue, as results from the operation of varying stresses in an oxidizing or corrosive environment. The cracking in this particular case was due principally to the inordinately large gap between the components. Additionally, several of the sealing welds of the tubes to the back tube plate were cracked in a radial manner, and it would appear that in addition, abnormal thermal conditions may well have been experienced intermittently in service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048751
EISBN: 978-1-62708-235-8
.... Investigation The as-received sample was dye penetrant tested before sectioning, and no cracks were indicated. Longitudinal sections were then taken along the centerline of the weld ( Fig. 1 ). Fig. 1 Weld in AISI type 316 heat-exchanger shell that failed due to hot shortness. (a) Longitudinal...
Abstract
The presence of subsurface cracks in a longitudinal weld seam of an AISI type 316 stainless steel heat-exchanger shell was revealed by radiographic testing. Numerous intergranular cracks associated with the root pass of the weld, which had propagated both parallel and normal to the weld seam, were revealed by metallographic examination (hot shortness). It was indicated by energy-dispersive spectroscopy that type 316 electrode was not used for the root pass and instead a nickel-copper alloy electrode was employed. It was thus concluded that cracking was caused due to the use of an incorrect electrode for the root pass as these electrodes are crack sensitive if overheated. The weld seam was completely ground out and replaced with the correct electrode material as a corrective measure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001328
EISBN: 978-1-62708-215-0
... showing deformation due to applied moment Testing Procedures and Results Nondestructive Evaluation Dye Penetrant Testing All system components were abrasively blasted with ground walnut shells prior to inspection and selection of specimens. The intent was to provide a clean test surface...
Abstract
During 5.7 years of service, dye penetrant inspection of Inconel 800H pigtail connections regularly showed cracks at weld toes. Weld repairs were not able to prevent reoccurrence but often aggravated the condition. Samples containing small, but detectable, reducer-to-pigtail cracks showed intergranular cracks originating at weld toes and filled with oxidation product, which precluded determination of the cracking mechanism. All weldments exhibited high degrees of secondary precipitates, with original fabrication welds exhibiting higher apparent levels than repair welds. SEM/EDS analysis showed base metal grain boundary precipitates to be primarily chromium carbides, but some titanium carbides were also observed. Failure was believed to result from the synergism of thermally driven tube distortion, which resulted in over-stress, and from the intergranular oxidation products and intergranular carbides which contributed to cracking. It was recommended that stresses be reduced and /or that materials and components be changed. Refinements in welding procedures and implementation of preweld/postweld heat treatments were recommended also.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001332
EISBN: 978-1-62708-215-0
... continuously in a circular path. Nondestructive evaluation was concluded with dye penetrant tests, as shown in Fig. 1 , 2 , 3 and 4 . It was quite evident that the flange was not a single-piece component. A large inside diameter flange was reduced to a 356 mm (14 in.) ID unit by welding a 19 mm (0.75...
Abstract
A cracked 356 mm (14 in.) diam slip-on flange (Ni-Cr-Mo-V steel) was submitted for failure analysis. Reported results and observations indicated that the flange was not an integral forging or a casting, as specified. It had been fabricated by welding and machining a ring insert within a flange with a larger internal diameter. The flange cracked because the welds between the flange and the insert were inadequate to withstand the bolting pressures. A warning was issued to end users of the flanges, which are being inspected nondestructively for conformance to specifications.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
... and measured 1.5 m (58 in.) in diameter and 8.5 m (28 ft) in length. Investigation (visual inspection, chemical analysis, radiography, dye-penetrant inspection, and hydrostatic testing of all E-Brite welds, 4x images, 100x/200x images electrolytically etched with 10% oxalic acid, and V-notch Charpy testing...
Abstract
A nozzle in a wastewater vaporizer began leaking after approximately three years of service with acetic and formic acid wastewaters at 105 deg C (225 deg F) and 414 kPa (60 psig). The shell of the vessel was weld fabricated from 6.4 mm (0.25 in.) E-Brite stainless steel plate and measured 1.5 m (58 in.) in diameter and 8.5 m (28 ft) in length. Investigation (visual inspection, chemical analysis, radiography, dye-penetrant inspection, and hydrostatic testing of all E-Brite welds, 4x images, 100x/200x images electrolytically etched with 10% oxalic acid, and V-notch Charpy testing) supported the conclusion that failure of the nozzle weld was the result of intergranular corrosion caused by the pickup of interstitial elements and subsequent precipitation of chromium carbides and nitrides. Carbon pickup was believed to have been caused by inadequate joint cleaning prior to welding. The increase in the weld nitrogen level was a direct result of inadequate argon gas shielding of the molten weld puddle. Two areas of inadequate shielding were identified: improper gas flow rate for a 19 mm (0.75 in.) diam gas lens nozzle, and contamination of the manifold gas system. Recommendations included changes in the cleaning and welding process.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048791
EISBN: 978-1-62708-234-1
... Abstract Linear indications on the outer surface of a cross in a piping system were revealed by dye-penetrant examination. The cross was specified to be SA403 type WP 304 stainless steel. The cross had been subjected to induction-heating stress improvement. The linear indications on the cross...
Abstract
Linear indications on the outer surface of a cross in a piping system were revealed by dye-penetrant examination. The cross was specified to be SA403 type WP 304 stainless steel. The cross had been subjected to induction-heating stress improvement. The linear indications on the cross were located in wide bands running circumferentially below the cross-to-cap weld and above the cap-to-discharge-pipe weld. The material was found to conform to the requirements both in terms of hardness and strength. Intergranular cracks filled with oxide were observed on metallographic analysis of a sectioned and oxalic acid etched sample. The grain size was found to exceed the ASTM standard. No indications of sensitization were observed during testing with practice A of ASTM A 262. Definitive evidence of contaminants to support SCC as the failure mechanism was not disclosed during analysis. It was concluded that overheating or burning of the forging, which classically results in large grain size, intergranular fractures, and fine oxide particles dispersed throughout the grains was the possible reason for the failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... ) were generated using Unigraphics NX 6 software. A stress analysis of the component was done via FEA using Unigraphics NX Nastran software, with a mesh size of 9.92 mm. Results and Discussion Non-Destructive Testing Two dye-penetrant inspections of the component pieces did not indicate any...
Abstract
A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001314
EISBN: 978-1-62708-215-0
... diameter) have been successfully used with a horizontal coil axis. Selection of Specimens Field NDE dye penetrant examination revealed extensive cracking in coils 5 and 6, and no cracking in coils 1–4 (see Figure 1 ). Coils 5 and 6 were removed from the vaporizer for additional testing, including...
Abstract
A gas-fired, ASTM A-106 Grade B carbon steel vaporizer failed on three different occasions during attempts to bring the vaporizer on line. Dye penetrant examination indicated the presence of multiple packets of ductile cracks on the inside of the coil radius at the bottom of the horizontal axis coils. Visual examination of the inside of the tubing indicated the presence of a carbonaceous deposit resulting from decomposition of the heat-exchanging fluid. Subsequent metallographic examination and microhardness testing indicated that the steel was heated to a temperature above the allowable operating temperature for the fluid. The probable cause for failure is thermal fatigue due to the localized overheating. Flow conditions inside the tubing should be reexamined to ensure suitable conditions for annular fluid flow.
1