1-20 of 155 Search Results for

ductile-to-brittle transition

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0045987
EISBN: 978-1-62708-221-1
... condition and had a ductile-to-brittle transition temperature exceeding 93 deg C (200 deg F). This transition temperature was much too high for the application. It was recommended that a modified ASTM A572, grade 42 (0.15% C max), type 1 or 2, steel be used (type 1, which contains niobium, may be needed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0065825
EISBN: 978-1-62708-228-0
... were concentrated towards decreasing the Charpy ductile-to-brittle transition temperature to avoid brittle fracture. It was subsequently revealed that the absorbed energy on the upper shelf of the Charpy energy-temperature curve was critical for arresting a moving crack. Both fracture initiation...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047512
EISBN: 978-1-62708-219-8
... of the incomplete welds. Continuation of the cracks was attributed to the brittle condition of the steel when cooled by the night air. A steel with a much lower ductile-to-brittle transition temperature is essential for this type of structure. Other necessary steps include better control of the girth-welding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047508
EISBN: 978-1-62708-221-1
..., hydrogen embrittlement, or both. At subzero temperatures, the steel was below its ductile-to-brittle transition temperature. These circumstances suggest a brittle condition. Steps to avoid this type of failure: For cold conditions, the steel plate should have a low carbon content and a high manganese...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046205
EISBN: 978-1-62708-225-9
.... Evidence found supports the conclusion that the shaft failed as the result of stress in the sharp fillets and rough surfaces at the root of the splines. Cold weather failure occurred sooner than in hot weather because ductile-to-brittle transition temperature of the 1040 steel shaft was too high...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001588
EISBN: 978-1-62708-221-1
... and strain in the low ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure. Bridges (structures) Ore conveyors Structural steel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0090639
EISBN: 978-1-62708-227-3
... on cargo ships with the cracking problem supported the conclusion that the failure was caused by overload. Additional testing showed that the overload failure and the transition from ductile to brittle fracture were facilitated by a combination of high brittleness due to flame cutting, increased hardness...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001146
EISBN: 978-1-62708-229-7
... a thermal shock in the pipe which, when cooled below its NDTT, cracked in a brittle manner. Low temperature Nil ductility transition temperature Nuclear power generation Piping Thermal shock ASTM A516 grade 70 UNS K02700 Brittle fracture Introduction Visual/Photography Optical...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0089752
EISBN: 978-1-62708-219-8
... rolled from fully killed ingots. Aqueducts Ductile brittle transition Fillet welds Joint design Piping Preheating Stress concentration Welding defects ASTM A572 grade 42 Type 2 Brittle fracture Joining-related failures A 208 cm (82 in.) ID steel aqueduct fractured circumferentially...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
.... It illustrates how surface degradation of a plain strain tension specimen alters the ductile brittle transition in polyethylene creep rupture. The article concludes with information on the effects of temperature on polymer performance. creep rupture ductile brittle transition environmental stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048777
EISBN: 978-1-62708-229-7
..., the ductile-to-brittle transition temperature of materials of construction should be below the hydrostatic-test temperature. ...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001534
EISBN: 978-1-62708-220-4
... ( No. 8 ), 1978 , p 224 – 227 12. Towers O.L. , Testing Sub-size Charpy Specimens: Part I—The Influence of Thickness on the Ductile/Brittle Transition , Met. Constr. , Vol 18 ( No. 3 ), 1986 , p 171R – 176R 13. Udin H. , Funk E.R. , and Wulf J. , Welding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090974
EISBN: 978-1-62708-235-8
... below the ductile-to-brittle transition temperature for this material. The molybdenum, cobalt, and vanadium all exceeded the specification limits, and the sulfur content was near the maximum allowable. The aluminum content was relatively low, and the tensile strength appeared to be substantially...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
... of nitrogen, carbon, and oxygen. To characterize the condition of the vessel further, Charpy V-notch impact tests were run on the unaffected base metal, the HAZ, and the uncorroded (sound) weld metal. These tests showed the following ductile-to-brittle transition temperatures: Specimen Ductile...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001720
EISBN: 978-1-62708-227-3
.... Several factors are known to have significant effects on the toughness of steels, and in particular on the ductile to brittle transition behavior ( 11 ). The carbon content has the largest effect and raises the ductile to brittle transition temperature as measured by (DBTT) by 14°C (25°F) for every...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001511
EISBN: 978-1-62708-227-3
... grade steel containing a lot of impurities because it solidified last is below its ductile to brittle transition temperature; thus a brittle crack can be created during heat treatment. It can be shown that the same crack could be created during cooling from the normalizing temperature. The crack...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
.... It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
...Abstract Abstract Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001347
EISBN: 978-1-62708-215-0
...-in.) ring sections, segments C, D, E, and F in Fig. 1 , on either side of the manway A field examination of the failure surfaces revealed characteristic brittle fracture chevrons, brittle fracture transition into ductile tearing, delamination along the mid-plate thickness plane and a fracture origin...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... they determine whether the material is stressed above or below any ductile-to-brittle transition temperature below which relatively low energy fractures can occur. Other degradation mechanisms, such as corrosion and scaling; stress corrosion; erosion from flowing gases, liquids, and solids; hydrogen damage...