Skip Nav Destination
Close Modal
Search Results for
ductile cast iron
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 169 Search Results for
ductile cast iron
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Mobile Harbor Crane Wheel Hub Fatigue Failure
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Fig. 3 Optical metallograph of ductile cast iron showing the spheroidal graphite phase in a ferrite matrix. 250×
More
Image
in Mobile Harbor Crane Wheel Hub Fatigue Failure
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Image
in Brittle Fracture of a Ductile Iron Brake Drum by Thermal-Contraction Overload
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 1 Sand-cast ductile iron brake drum from a cable-wound winch that fractured from overload caused by thermal contraction. (a) Schematic of the clutch/brake drum assembly. Dimensions given in inches. (b) Heat checks on the surface of the drum. (c) A fracture surface of the drum showing
More
Image
in Failure of High-Temperature Rotary Valve Due to Expansion and Distortion Caused by the Effects of Excessive Operating Temperature
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 1 Oxidation and thermal fatigue cracking of a cast ductile iron rotor. See also Fig. 2 , 3 , 4 , 5 , 6 , and .
More
Image
in Fracture of Ductile-Iron Pistons for a Gun Recoil Mechanism as Affected by Type of Graphite
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 1 Piston for a gun-recoil mechanism, sand cast from ductile iron conforming to MIL-I-11466, grade D7003, that fractured in fatigue because of vermicularity of graphite. (a) and (b) Two different views of the piston showing fractures; A and B indicate orifices (see text). Approximately
More
Image
in Fatigue Fracture of a Stuffing Box That Originated at the Inner End of a Lubrication Hole
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 1 Stuffing box sand cast from ASTM A 536, grade 60-45-10, ductile iron. (a) Configuration and dimensions (given in inches). (b) Micrograph showing the structure consisting of graphite nodules in a ferritic matrix with remnants of a pearlite network. Etched with nital. 100×
More
Image
in Fracture of Teeth in an Oil-Pump Gear Because Ductility Was Inadequate for Shock Loading in Service
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 1 Sand-cast oil-pump gears. (a) ASTM A536, grade 100-70-03, ductile iron. (b) Class 40 gray iron that fractured because of improper material selection. 0.25×
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001633
EISBN: 978-1-62708-221-1
... Abstract Failure analysis of a mobile harbor crane wheel hub that included SEM and EDS analyses demonstrated that the mechanism of failure was fatigue. The wheel hub was a ductile cast iron component that had been subjected to cyclic loading during a ten-year service period. The fracture...
Abstract
Failure analysis of a mobile harbor crane wheel hub that included SEM and EDS analyses demonstrated that the mechanism of failure was fatigue. The wheel hub was a ductile cast iron component that had been subjected to cyclic loading during a ten-year service period. The fracture surface of the fatigue failure also contained corrosion deposit, suggesting that cracking occurred over a period of time sufficient to allow corrosion of the cracked surfaces. Replacement and alignment of the failed wheel hub was recommended along with inspection of the nonfailed wheel hubs that remained on the crane.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0089617
EISBN: 978-1-62708-232-7
... Abstract A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten...
Abstract
A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten metal, flowing through a trough, was poured into the mold beginning at the bell end and ending with the spigot end being poured last. After the pipe had cooled, it was pulled out from the bell end of the mold, and the procedure was repeated. Investigation supported the conclusion that failure of the mold surface was the result of localized overheating caused by splashing of molten metal on the bore surface near the spigot end. In addition, the mold-wash compound (a bentonite mixture) near the spigot end was too thin to provide the proper degree of insulation and to prevent molten metal from sticking to the bore surface. Recommendations included reducing the pouring temperatures of the molten metal and spraying a thicker insulating coating onto the mold surface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
... the presence of graphite nodules, indicating the probability that the component was manufactured from a ductile cast iron. The fractured surface also exhibited the presence of a dark region toward the center, suggesting the possibility of a shrinkage defect. The estimated area of this defect was approximately...
Abstract
A ductile iron T-hook hook was reported to have fractured in service. It was further reported that the hook had been subjected to a load that did not exceed 5900 kg (13,000 lb) at the time of fracture. No information was provided regarding the type of metal used to manufacture the hook. A failure analysis was requested to determine the cause of fracture. Two hooks were submitted for examination. Analysis (visual inspection, 2.7x light fractography, chemical analysis, 110x SEM fractography, 27x/110x/215x nital-etched micrographs) supported the conclusions that this component fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress that exceeded 5900 kg (13,000 lb), the observations made in this investigation suggested that either the load was underestimated or that the indicated load was applied at a more rapid rate (perhaps with a jerk), which would tend to increase the effective force of the load.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047220
EISBN: 978-1-62708-220-4
... with a tensile strength of 290 MPa (42 ksi) at 207 HRB. The smaller gear was sand cast from ASTM A536, grade 100-70-03, ductile iron with a tensile strength of 696 MPa (101 ksi) at 241 HRB. Analysis (metallographic examination) supported the conclusion that excessive beam loading and a lack of ductility...
Abstract
Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron with a tensile strength of 290 MPa (42 ksi) at 207 HRB. The smaller gear was sand cast from ASTM A536, grade 100-70-03, ductile iron with a tensile strength of 696 MPa (101 ksi) at 241 HRB. Analysis (metallographic examination) supported the conclusion that excessive beam loading and a lack of ductility in the gray iron gear teeth were the primary causes of fracture. During subsequent rotation, fragments of gray iron damaged the mating ductile iron gear. Recommendations included replacing the large gear material with ASTM A536, grade 100-70-03, ductile iron normalized at 925 deg C (1700 deg F), air cooled, reheated to 870 deg C (1600 deg F), and oil quenched. The larger gear should be tempered to 200 to 240 HRB, and the smaller gear to 240 to 280 HRB.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090965
EISBN: 978-1-62708-221-1
... Abstract The upper frame from a large cone crusher failed in severe service after an unspecified service duration. The ductile iron casting was identified as grade 80-55-06, signifying minimum properties of 552 MPa (80 ksi) tensile strength, 379 MPa (55 ksi) yield strength, and 6% elongation...
Abstract
The upper frame from a large cone crusher failed in severe service after an unspecified service duration. The ductile iron casting was identified as grade 80-55-06, signifying minimum properties of 552 MPa (80 ksi) tensile strength, 379 MPa (55 ksi) yield strength, and 6% elongation. Investigation (visual inspection, chemical analysis, unetched 30x images, and 2% nital etched 30x images) was difficult because the fracture surface of the frame section was obliterated by postfracture corrosion. Repeated attempts at cleaning using progressively stronger chemicals revealed that no telltale fracture morphology remained. However, the investigation supported the conclusion that the crusher frame failed via brittle overload fracture, likely due to excessive service stresses and substandard mechanical properties. Recommendations included additional quality-control measures to provide better spheroidal graphite morphology at the frame surface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047315
EISBN: 978-1-62708-225-9
... Abstract A sand-cast gray iron flanged nut was used to adjust the upper roll on a 3.05 m (10 ft) pyramid-type plate-bending machine. The flange broke away from the body of the nut during service. Analysis (visual inspection and 150x micrographs of sections etched with nital) supported...
Abstract
A sand-cast gray iron flanged nut was used to adjust the upper roll on a 3.05 m (10 ft) pyramid-type plate-bending machine. The flange broke away from the body of the nut during service. Analysis (visual inspection and 150x micrographs of sections etched with nital) supported the conclusions that brittle fracture of the flange from the body was the result of overload caused by misalignment between the flange and the roll holder. The microstructure contained graphite flakes of excessive size and inclusions in critical areas; however, these metallurgical imperfections did not appear to have had significant effects on the fracture. Recommendations included carefully and properly aligning the flange surface with the roll holder to achieve uniform distribution of the load. Also, a more ductile metal, such as steel or ductile iron, would be more suitable for this application and would require less exact alignment.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090938
EISBN: 978-1-62708-221-1
... Abstract Both halves of a gray cast iron transmission housing from a 50-ton dump truck were found to contain numerous cracks. The housing material was possibly G3000 grade designation for automotive gray cast iron. No service duration or material specifications were provided. Investigation...
Abstract
Both halves of a gray cast iron transmission housing from a 50-ton dump truck were found to contain numerous cracks. The housing material was possibly G3000 grade designation for automotive gray cast iron. No service duration or material specifications were provided. Investigation (visual inspection, tensile testing, 2% nital etched 59x cross sections, and metallographic analysis) supported the conclusion that failure was due to applied stresses sufficient to fracture the castings which exhibited brittle overload cracks at highly stressed locations. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0046505
EISBN: 978-1-62708-219-8
... of the contact area was by ductile (transgranular) fracture. Recommendations included changing the latch material from malleable iron to silicon bronze (C87300). The use of silicon bronze prevents corrosion or galvanic attack and proper adjustment of the latch maintains an adequate contact area. Control...
Abstract
One of three valves in a dry automatic sprinkler system tripped accidentally, thus activating the sprinklers. Maintenance records showed that the three valves had been in service less than two years. The valve consisted of a cast copper alloy clapper plate that was held closed by a pivoted malleable iron latch. The latch and top surface of the clapper plate were usually in a sanitary-water environment (stabilized, chlorinated well water with a pH of 7.3) under stagnant conditions. Process make-up water that had been clarified, filtered, softened, and chlorinated and had a pH of 9.8 was occasionally used in the system. Analysis (visual inspection and 250x micrograph) supported the conclusions that failure of the latch was caused by plastic deformation from extensive loss of metal by galvanic corrosion and the sudden loading related to the tripping of the valve. Failure in some regions of the contact area was by ductile (transgranular) fracture. Recommendations included changing the latch material from malleable iron to silicon bronze (C87300). The use of silicon bronze prevents corrosion or galvanic attack and proper adjustment of the latch maintains an adequate contact area.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089633
EISBN: 978-1-62708-220-4
... Abstract A stuffing box (sand cast from ASTM A 536, grade 60-45-10, ductile iron) began leaking water after two weeks of service. The machine was operating at 326 rpm with a discharge water pressure of 21.4 MPa (3100 psi). Investigation (visual inspection, mechanical analysis, and nital etched...
Abstract
A stuffing box (sand cast from ASTM A 536, grade 60-45-10, ductile iron) began leaking water after two weeks of service. The machine was operating at 326 rpm with a discharge water pressure of 21.4 MPa (3100 psi). Investigation (visual inspection, mechanical analysis, and nital etched 100x magnification) supported the conclusion that the crack initiated at the inner edge of a lubrication hole and had propagated toward both the threaded and flange ends of the casting. An appreciable residual-stress concentration must have been present and caused propagation of the crack. The residual stress might have been caused when a fitting was tightly screwed into the lubrication hole, and it might have been concentrated by notches at the inner end of the hole created when the drill broke through the sidewall to the stuffing box.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047321
EISBN: 978-1-62708-224-2
... Abstract A 58.4 cm (23 in.) diam heavy-duty brake drum component of a cable-wound winch broke into two pieces during a shutdown period. Average service life of these drums was two weeks; none had failed by wear. The drums were sand cast from ductile iron. During haul-out, the cable on the cable...
Abstract
A 58.4 cm (23 in.) diam heavy-duty brake drum component of a cable-wound winch broke into two pieces during a shutdown period. Average service life of these drums was two weeks; none had failed by wear. The drums were sand cast from ductile iron. During haul-out, the cable on the cable drum drove the brake drum, and resistance was provided by brake bands applied to the outside surface of the brake drum. Friction during heavy service was sufficient to heat the brake drum, clutch mount, and disk to a red color. Examination of the assembly indicated that the brake drum would cool faster than its mounts and would contract onto them. Brittle fracture of the brake drum occurred as a result of thermal contraction of the drum web against the clutch mount and the disk. The ID of the drum web was enlarged sufficiently to allow for clearance between the web and the clutch mount and disk at a temperature differential of up to 555 deg C (1000 deg F). With the adoption of this procedure, brake drums failed by wear only.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001453
EISBN: 978-1-62708-224-2
... have been subjected to periodical annealing in accordance with Statutory requirements, which would have restored the ductility of the surface material. Chains Optical microscopy Wrought iron Brittle fracture While a chain sling having a safe working load of 30 cwts. was being used to lift...
Abstract
While a chain sling was being used to lift a casting one of the links ruptured. The sling, reputed to be of the electrically-welded steel type, was at least eight years old and had been overhauled several times during its working life. Examination showed the links were scarf-welded. Furthermore, the welds were at the ends and not at the sides as is usual in the case of electrically-welded chains. A transverse section from one side of a link was examined microscopically. This showed the material to be wrought-iron of satisfactory quality. It was concluded this chain sling had been made from wrought-iron, forge welded in the usual manner, and that it was not electrically-welded steel as had been supposed. Failure was attributed to embrittlement in service of the surface material of the links. If it had been realized that the sling was made from wrought-iron then it would doubtless have been subjected to periodical annealing in accordance with Statutory requirements, which would have restored the ductility of the surface material.
1