Skip Nav Destination
Close Modal
Search Results for
drive shaft
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 151 Search Results for
drive shaft
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001759
EISBN: 978-1-62708-241-9
... Abstract A bearing cup in a drive shaft assembly on an automobile was found to have failed. A detailed analysis was conducted using the QC story approach, which begins by proposing several possible failure scenarios then following them to determine the main root cause. A number of alternative...
Abstract
A bearing cup in a drive shaft assembly on an automobile was found to have failed. A detailed analysis was conducted using the QC story approach, which begins by proposing several possible failure scenarios then following them to determine the main root cause. A number of alternative solutions were identified and then validated based on chemical analysis, endurance and hardness tests, and microstructural examination. The investigation revealed that carbonitriding can effectively eliminate the type of failure encountered because it prevents through hardening of the bearing cup assembly.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
... Abstract The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue...
Abstract
The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used in the design calculations, thus causing the initiation of the cracking. Moreover, although the shaft had been quenched and tempered, its actual hardness did not have the optimal value for long-term fatigue strength.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001369
EISBN: 978-1-62708-215-0
... Abstract A crane long-travel worm drive shaft was found to be chipped during unpacking after delivery. Chemical analysis showed that the steel (EN36A with a case depth of 1 mm, or 0.04 inch did not meet specifications. Magnetic particle inspection revealed a crack on the side of the shaft...
Abstract
A crane long-travel worm drive shaft was found to be chipped during unpacking after delivery. Chemical analysis showed that the steel (EN36A with a case depth of 1 mm, or 0.04 inch did not meet specifications. Magnetic particle inspection revealed a crack on the side of the shaft opposite the chip. Metallographic examination indicated that the case depth was approximately 2 mm (0.08 in.) and that a repair weld of an earlier chip had been made in the cracked area. The chipping was attributed to excessive case depth and rough handling. It was recommended that the shaft be returned to the manufacturer and a replacement requested.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047793
EISBN: 978-1-62708-217-4
... in a turbine-powered aircraft failed, resulting in damage to the aircraft. The pump is shown in Fig. 1(a) and (b) . Fig. 1 Fuel pump that failed by vibration and abrasion. (a) Configuration and dimensions (given in inches). (b) Splines on the drive shaft and in the impeller were worn away...
Abstract
Failure of a case hardened steel shaft incorporated fuel pump in a turbine-powered aircraft resulted in damage to the aircraft. The disassembled pump was found to be dry and free of any contamination. Damage was exhibited on the pressure side of each spline tooth in the impeller and the relatively smooth cavities and undercutting of the flank on this side indicated that the damage was caused by an erosion or abrasion mechanism. A relatively smooth worn area was formed at the center of each tooth due to an abrasive action and an undulating outline with undercutting was observed on the damaged side. Particles of sand, paint, or plastic, fibers from the cartridge, brass, and steel were viewed in the brown residue on the filter cartridge under a low power microscope and later confirmed by chemical analysis. Large amount of iron was identified by application of a magnet. It was concluded that the combined effect of vibration and abrasive wear by sand and metal particles removed from the splines damaged the shaft. Case hardened spline teeth surface was recommended to increase resistance to wear and abrasion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0091092
EISBN: 978-1-62708-224-2
... Abstract A 60.3 mm (2.375 in.) diam drive shaft in the drive train of an overhead crane failed. The part submitted for examination was a principal drive shaft that fractured near a 90 deg fillet where the shaft had been machined down to 34.9 mm (1.375 in.) to serve as a wheel hub. A 9.5 mm...
Abstract
A 60.3 mm (2.375 in.) diam drive shaft in the drive train of an overhead crane failed. The part submitted for examination was a principal drive shaft that fractured near a 90 deg fillet where the shaft had been machined down to 34.9 mm (1.375 in.) to serve as a wheel hub. A 9.5 mm (0.375 in.) wide x 3.2 mm (0.125 in.) deep keyway was machined into the entire length of the hub, ending approximately 1.6 mm (0.062 in.) away from the 90 deg fillet. A second shaft was also found to have cracked at a change in diameter, where it was machined down to serve as the motor drive hub. Investigation (visual inspection, inspection records review, optical and scanning electron microscopy, and fractography) supported the conclusion that the fracture mode for both shafts was low-cycle rotating-bending fatigue initiating and propagating by combined torsional and reverse bending stresses. Recommendations included replacing all drive shafts with new designs that eliminated the sharp 90 deg chamfers in favor of a more liberal chamfer, which would reduce the stress concentration in these areas.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001764
EISBN: 978-1-62708-241-9
... Abstract High failure rates in the drive shafts of 40 newly acquired articulated buses was investigated. The drive shafts were fabricated from a low-carbon (0.45%) steel similar to AISI 5046. Investigators examined all 40 buses, discovering six different drive shaft designs across the fleet...
Abstract
High failure rates in the drive shafts of 40 newly acquired articulated buses was investigated. The drive shafts were fabricated from a low-carbon (0.45%) steel similar to AISI 5046. Investigators examined all 40 buses, discovering six different drive shaft designs across the fleet. All of the failures, a total of 14, were of the same type of design, which according to finite-element analysis, produces a significantly higher level of stress. SEM examination of the fracture surface of one of the failed drive shafts revealed fatigue striations near the OD and ductile dimpling near the ID, evidence of high-cycle fatigue. Based on the failure rate and fatigue life predictions, it was recommended to discontinue the use of drive shafts with the inferior design.
Image
Published: 01 December 2019
Fig. 2 Typical nonfailed Design 1 drive shaft. The circled area is called the shoulder area of the female spline.
More
Image
Published: 01 December 2019
Fig. 3 Typical nonfailed Design 5/6 drive shaft. The circled area is called the shoulder area of the female spline. The cracks on the Design 5/6 drive shafts have been initiating in this shoulder area.
More
Image
Published: 01 December 2019
Fig. 4 Failed drive shaft, Item 6, used for detailed optical and scanning electron microscopy (SEM) examination
More
Image
Published: 01 December 2019
Fig. 5 Fracture surface of failed drive shaft, Item 6, used for detailed optical and SEM examination. Note ratchet marks around perimeter of fracture surface, indicating multiple fatigue initiation sites.
More
Image
in Analysis of Bearing Cup Assembly Failure in Drive Shaft Assembly
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
Published: 01 December 1993
Image
in Corrosion-Induced Failures in Aircraft Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Image
in Fatigue Fracture of a 1040 Steel Splined Shaft
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 1 Drive shaft that fractured from fatigue in the spline area because of sharp fillets and machining marks at spline roots. Dimensions given in inches
More
Image
Published: 01 December 2019
Fig. 1 An on-site inspection and identification of replaced drive shafts identified 6 visually discernable designs among the 28 drive shafts inspected.
More
Image
Published: 01 December 2019
Fig. 9 Comparison of cross sections of the Design 1 and 6 drive shafts. The areas marked with circles are of particular concern because they differ in terms of fillet radii and cross-sectional area.
More
Image
Published: 01 December 2019
Image
Published: 01 December 2019
Fig. 11 Von Mises stress contours present in the Design 1 drive shafts subjected to 1356 N-m (1000 ft-lbf) torque. Maximum stress is 93.7 MPa (13.59 ksi) at the location indicated.
More
Image
Published: 01 December 2019
Fig. 12 Von Mises stress contours present in the Design 6 drive shafts subjected to 1356 N-m (1000 ft-lbf) torque. Maximum stress is 132 MPa (19.10 ksi) at the location indicated.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048661
EISBN: 978-1-62708-225-9
... Abstract The drive wheel on a clutch-drive support assembly was slightly loose and caused clutch failures in service after 680,000 cycles. After failure, removal of the taper pin holding the drive wheel on the shaft was difficult, indicating that the pin was tight in the assembly. The taper pin...
Abstract
The drive wheel on a clutch-drive support assembly was slightly loose and caused clutch failures in service after 680,000 cycles. After failure, removal of the taper pin holding the drive wheel on the shaft was difficult, indicating that the pin was tight in the assembly. The taper pin was made of 1141 steel, the shaft 1117 steel, and the drive wheel 52100 steel. It was found that failure of the clutch-drive support assembly occurred as a result of fatigue fracture of the taper pin. A loose fit between the drive wheel and the shaft and between the drive wheel and the pin permitted movement that resulted in fatigue failure. Fretting of the pin and drive shaft was observed but did not appear to have contributed to the failure. To prevent reoccurrence, the assembly should be redesigned to include an interference fit between the shaft and the drive wheel. The drive wheel and the shaft should be taper reamed at assembly to ensure proper fit. In addition, receiving inspection should be more critical of the components and accept only those that meet specifications.
1