Skip Nav Destination
Close Modal
By
Sheng Xu, Le-yu Zhou, Yong-ming Yan, Hong-wu Zhu
By
Jeffrey A. Hawk, Rick D. Wilson, Daniel R. Danks, Matthew T. Kiser
By
Michael E. Finn, John M. Tartaglia
By
Eli Levy
By
B.S. Covino, Jr., S.D. Cramer, G.R. Holcomb, S.J. Bullard, C.A. Summers ...
Search Results for
drill bit
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 27
Search Results for drill bit
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
A scanning electron micrograph of a hole drilled with a worn drill bit. Not...
Available to PurchasePublished: 01 January 2002
Fig. 16 A scanning electron micrograph of a hole drilled with a worn drill bit. Note that the final position of the hole is not where the drilling started (i.e., the drill wandered across the surface before “biting”) and the ragged nature of the periphery of the hole.
More
Image
Scanning electron micrograph of a hole drilled with a worn drill bit. Note ...
Available to PurchasePublished: 15 January 2021
Fig. 16 Scanning electron micrograph of a hole drilled with a worn drill bit. Note that the final position of the hole is not where the drilling started (i.e., the drill wandered across the surface before “biting”) and the ragged nature of the periphery of the hole.
More
Book Chapter
Failure Analysis of the 18CrNi3Mo Steel for Drilling Bit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001787
EISBN: 978-1-62708-241-9
... Abstract A masonry type drill bit, designed for impact drilling in rock, fractured after a short time in service. Samples of the failed bit were analyzed using optical and scanning electron microscopy, quantitative metallography, and chemical analysis. The composition was found...
Abstract
A masonry type drill bit, designed for impact drilling in rock, fractured after a short time in service. Samples of the failed bit were analyzed using optical and scanning electron microscopy, quantitative metallography, and chemical analysis. The composition was found to be that of 18CrNi3Mo steel. Investigators also found evidence of inclusions and prior austenite grain size, although it was determined that neither played a role in the failure. Rather, according to test data, the failure occurred because of stress concentration (due to geometric discontinuities along the tooth profiles) and the cumulative effect of torque and force loading (the byproduct of continuous twisting and axial impact). Cracks readily initiate under these conditions then propagate quickly through what was found to be networks of tempered martensite, thus resulting in premature failure.
Image
Undesirable altered surface caused by dull drill bits in holemaking. (a) Se...
Available to Purchase
in Prevention of Machining-Related Failures
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 4 Undesirable altered surface caused by dull drill bits in holemaking. (a) Section perpendicular to the drilled hole axis in high-strength alloy steel. (b) Cross section through a hole made in stainless steel with a dull drill bit. Original magnification: ~20×
More
Image
The macromorphology of the drilling bit ( a ) the fracture surface; ( b ) t...
Available to Purchase
in Failure Analysis of the 18CrNi3Mo Steel for Drilling Bit
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 1 The macromorphology of the drilling bit ( a ) the fracture surface; ( b ) the beach mark; ( c ) the crack of the tooth profile
More
Image
in Failure Analysis of the 18CrNi3Mo Steel for Drilling Bit
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in Failure Analysis of the 18CrNi3Mo Steel for Drilling Bit
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
Scanning electron micrograph of the details of a hole drilled with a new, s...
Available to PurchasePublished: 15 January 2021
Fig. 15 Scanning electron micrograph of the details of a hole drilled with a new, sharp drill bit. Note the clean hole with only a minor amount of damage to the hole periphery.
More
Image
A scanning electron micrograph of the details of a hole drilled with a new,...
Available to PurchasePublished: 01 January 2002
Fig. 15 A scanning electron micrograph of the details of a hole drilled with a new, sharp drill bit. Note the clean hole with only a minor amount of damage to the hole periphery.
More
Book Chapter
Abrasive Wear Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
..., such as bulldozer blades, excavator teeth, rock drill bits, crushers, slushers, ball mills and rod mills, chutes, slurry pumps, and cyclones. However, abrasive wear is not limited to these activities. Abrasion presents problems in many wear environments at one point or another, even though it may not be the primary...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Book Chapter
Abrasive Wear Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... is in the excavation, earth-moving, mining, and minerals-processing industries, where component deterioration occurs in a wide variety of equipment, such as bulldozer blades, excavator teeth, rock drill bits, crushers, slushers, ball mills and rod mills, chutes, slurry pumps, and cyclones. However, abrasive wear...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Book Chapter
Prevention of Machining-Related Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... be further reduced by strategic placement of the cutting fluid nozzles ( Fig. 2 ) ( Ref 5 ). Access holes in the body of milling cutters and drill bits that provide thorough-the-tool coolant flow improve the impingement of cutting fluid into the cutting zone and reduce rejection and workpiece production...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001519
EISBN: 978-1-62708-223-5
... an appreciable shear lip, which is characteristic of ductile overload failure (the cone part of the cup-cone fracture). The broken piece had a deep gouge on its side, probably inflicted by the drill bit. Based on these preliminary findings, it was suspected that the draw-in bolt was the first to fracture...
Abstract
An AISI 4340 Ni-Cr-Mo alloy steel draw-in bolt and the collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after relatively long service life. Based on fracture surface features, it was suspected that the draw-in bolt was the first to fracture, followed by failure of the collet, which shattered one of its arms when it struck the work table. Scanning electron microscopy showed the presence of hairline crack indications along grain facets on the fracture surface of the bolt. This, coupled with stepwise cracking in the material, generally raised suspicion of hydrogen embrittlement. It appeared that fracture in service progressed transgranularly to produce delayed failure under dynamic loading. The pickling process used to remove heat scale was suspected to be the source of hydrogen on the surface of the bolt. The manufacturer was requested to change its cleaning practice from pickling to grit blasting.
Book Chapter
Hydrogen Embrittlement Delayed Failure of a 4340 Steel Draw-In Bolt
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001384
EISBN: 978-1-62708-215-0
... ) displayed an appreciable shear lip, which is characteristic of ductile overload failure (the cone part of a cup-cone fracture). The broken piece contained a deep gouge on its side, probably inflicted by the drill-bit tool end. Fig. 3 SEM fractograph (a) of a field on the fracture surface shown in (b...
Abstract
The draw-in bolt and collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after a relatively long service life. The collet ejected at a high rotational speed due to loss of its vertical support and shattered one of its arms upon impact with the work table. SEM fractography and metallographic examinations conducted on the bolt revealed hairline indications along grain facets on the fracture surface and stepwise cracking in the material, both indicating failure by hydrogen embrittlement. Similar draw-in bolts were discarded and replaced with bolts manufactured using controlled processes.
Book Chapter
Corrosion Failure of the Rocky Point Viaduct
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001702
EISBN: 978-1-62708-219-8
... measured using this instrument. Chloride Distribution Powder samples of the concrete were taken to determine chloride distribution in the beam as a function of distance from the beam surface. Samples were taken using a hammer drill, a hollow drill bit, a powder collector, and a vacuum cleaner...
Abstract
The Rocky Point Viaduct, located near Port Orford, OR, was replaced after only 40 years of service. A beam from the original viaduct was studied in detail to determine the mechanisms contributing to severe corrosion damage to the structure. Results are presented from the delamination survey, potential and corrosion mapping, concrete chemistry, and concrete physical properties. The major cause of corrosion damage appears to have been the presence of both pre-existing and environmentally-delivered chlorides in the concrete.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... process would be a copper/nickel/chromium plating on a zinc die casting. Since the zinc is more soluble in acid than any of the plating layers, another approach is obviously required, such as sanding or drilling. Obviously, the odd shape of many products makes sampling difficult at best. Small specimens...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003504
EISBN: 978-1-62708-180-1
..., or masonry, at diameters in increments of 1 16 in., plus or minus 1 64 in, up to the length of the drill bit, in less than 30 s.” (Where no performance standard is given, an absolute standard will be inferred. For example, the function statement “to contain fluid,” without a maximum...
Abstract
Reliability-centered maintenance (RCM) is a systematic methodology for preventing failures. This article discusses the history of RCM and describes the key characteristics of an RCM process, which involves asking seven questions. The first four questions comprise a form of failure modes and effects analysis (FMEA), and therefore, the article explains the approach of RCM to FMEA and the failure management policies available under RCM. It reviews the ways that RCM classifies failure effects in terms of consequences and details how RCM uses failure consequences to identify the best failure management policy for each failure mode. The article concludes with a discussion on some practical issues pertaining to RCM that lie outside the scope of SAE JA1011.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006817
EISBN: 978-1-62708-329-4
... case where this can be done). For example, the primary function of a household drill may be “to drill a hole in wood, metal, or masonry, at diameters in increments of 1 16 in., plus or minus 1 64 in., up to the length of the drill bit, in less than 30 s.” (Where no performance...
Abstract
Reliability-centered maintenance (RCM) is a systematic methodology for preventing failures. This article begins by discussing the history of RCM and uses Society of Automotive Engineers (SAE) all-industry standard JA1011 as its model to describe the key characteristics of an RCM process. It then expands on questions involved in RCM process, offering definitions when necessary. Next, the article describes the approach of RCM to failure modes and effects analysis (FMEA), the failure management policies available under RCM, and the criteria of RCM for deciding when a specific failure management policy is technically feasible. Then, after discussing the ways that RCM classifies failure effects in terms of consequences, it describes how RCM uses failure consequences to identify the best failure management policy for each failure mode. Next, the building blocks of RCM are put together to create a failure management program. The article ends with a discussion on some practical issues pertaining to RCM that lie outside the scope of SAE JA1011.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... should be prepared according to the technique being utilized. A flat and polished sample is ideal for XRF. For OES, a flat but somewhat rough sample is most suitable, such as a sample turned on a lathe with a roughing bit or ground with 60-grit grinding paper. ICP-OES requires chips for acid digestion...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
.... Source: Ref 11 The mechanisms occurring in a given impact case are determined by the stress and sliding conditions within the contact. For example, in high-strength tungsten carbide bits of rock drilling equipment, surface fatigue leads to the formation of spalls ( Ref 12 ). Repetitive impact...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
1