Skip Nav Destination
Close Modal
Search Results for
discontinuous-fiber composites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 36 Search Results for
discontinuous-fiber composites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001116
EISBN: 978-1-62708-214-3
... in sample 1. Figure 4 shows a portion of that cross section. The pipe fractured in the upturned fibers adjacent to the ERW bond line. A secondary crack was also visible and is shown in greater detail in Fig. 5 and 6 . Although shaped like a hook crack, the secondary crack was jagged and discontinuous...
Abstract
Two failures of AP15A grade J-55 electric resistance welded (ERW) tubing in as our gas environment were investigated. The first failure occurred after 112 days of service. Replacement pipe failed 2 days later. Surface examination of the failed tubing indicated that fracture initiated at the outside surface. Metallographic analysis showed that the fracture originated in the upturned fibers adjacent to the ERW bond line. Cross sections of the weld were removed from three random locations in the test sample. At each location, the up turned fibers of the weld zone contained bands of hard-appearing microstructure. Hardness measurements confirmed these observations. The cracks followed these bands. It was concluded that the tubing failed from sulfide stress cracking, which resulted from bands of susceptible microstructure in the ERW zone. The banded microstructure in the pipe suggested that chemical segregation contributed to the hard areas. Postweld normalized heat treatment apparently did not sufficiently reduce the hardness of these areas.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... and fibering Burnished surface and controlled surface quality However, the beneficial factors of deformation processing can become a potential problem if the process is not carefully understood. Potential problems of the deformation process also include: Fracture-related problems: for example...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006758
EISBN: 978-1-62708-295-2
... pinpoint an area of interest on a large structure such as a pressure vessel or a mechanically loaded component. The UT signal response can also be used to determine the possible physical root cause of the sound, such as fiber breakage, buckling or loose or broken components of a structure...
Abstract
The goal of using nondestructive evaluation (NDE) in conjunction with failure analysis is to obtain the most comprehensive set of data in order to characterize the details of the damage and determine the factors that allowed the damage to occur. The NDE results can be used to determine optimal areas upon which to focus for sectioning and metallography in order to further investigate the condition of the component. This article provides information on the inspection method available for failure analysis, including standard methods such as visual testing, penetrant testing, and magnetic particle testing. It covers the effects of various factors on the properties of the part that may impact failure analysis, describes the characterization of damage modes and crack sizes, and finally discusses the processes involved in application of NDE results to failure analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001527
EISBN: 978-1-62708-224-2
... better abrasion resistance. Independent wire rope cores (IWRC) provide better crushing resistance than fiber cores. Because of the complex geometry of the assembled wires, the ultimate tensile strength is not equivalent to a large wire of equal cross-sectional area. A certain percentage of the load...
Abstract
Mechanical properties of wire ropes, their chemical composition, and the failure analysis process for them are described. The wires are manufactured from high-carbon, plain carbon steel, with high-strength ropes most often manufactured from AISI Grade 1074. During visual failure examination, the rope, strand, and wire diameters should all be measured. Examination should also address the presence or absence of lubricant, corrosion evidence, and gross mechanical damage. Failed wires can exhibit classic cup-and-cone ductile features, flat fatigue features, and various appearances in-between. However, wires are often mechanically damaged after failure. Most nondestructive evaluation (NDE) techniques are not applicable to wire rope failures. Electron microscope fractography of fracture surfaces is essential in failure analysis. Fatigue is the most important fracture mode in wire ropes. Metallographic features of wire ropes that failed because of ductile overload and fatigue are described.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... and improved mechanical properties by: Improved internal quality due to compressive deformation Grain refinement and beneficial grain-flow patterns Elimination of casting porosity and breakup of macrosegregation patterns Improved toughness and/or fatigue resistance due to grain flow and fibering...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001451
EISBN: 978-1-62708-224-2
...Abstract Abstract During the lifting of a piece of machinery by means of an overhead travelling crane the hook fractured suddenly. The load was attached to the hook by means of fiber rope slings and rupture occurred in a plane which appeared to coincide with the sling loop nearest to the back...
Abstract
During the lifting of a piece of machinery by means of an overhead travelling crane the hook fractured suddenly. The load was attached to the hook by means of fiber rope slings and rupture occurred in a plane which appeared to coincide with the sling loop nearest to the back of the hook. The rated capacity of the crane was 15 tons. At the time of the mishap it was being used to lift one end of a hydraulic cylinder with a total weight of about 27 tons. Fracture was of the cleavage type throughout. There was no evidence of any prior deformation of the material in the vicinity, nor was there any indication of a pre-existing crack or major discontinuity at the point of origin. A sulfur print suggested the hook had been forged from a billet cogged down from an ingot of semi-killed steel. Failure of this hook was attributed to strain-age embrittlement of the material at the surface of the intrados.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... of anomalies. Equipment for remote visual examination includes telescopes, borescopes, and fiber-optics cameras. Visual examination of translucent materials uses artificial lighting that can be contained in an illuminator to produce directional lighting. The illuminator provides light of an intensity...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... polymers, such as polycarbonate and polymethyl methacrylate, can exhibit either true striations or discontinuous growth bands, depending on load levels and loading history. A brief discussion of the fractography of fiber-reinforced, polymer-matrix structural composites is provided in Ref 33...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... as a fiber, plastic, or elastomer ( Fig. 1 ), depending on the relative strength of intermolecular bonds and molecular structure or geometry. Noncrystalline polymers with weak intermolecular forces are usually elastomers or rubbers at temperatures above the glass transition temperature, T g . In contrast...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals. It provides information on deformation, fracture, and crack propagation as well as the fractography involving the examination and interpretation of fracture surfaces, to determine the cause of failure. The fracture modes such as ductile fractures and brittle fractures are reviewed. The article also presents a detailed account of various fracture surface features. It concludes with several cases of field failure in various polymers that illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
... rather than a jagged or deformed shape. The residue on the filter cartridge was brown, and when viewed under a low-power microscope, particles of sand, paint, or plastic, fibers from the cartridge, brass, and steel could be identified. Application of a magnet to the sample showed that it contained...
Abstract
This article discusses failures in shafts such as connecting rods, which translate rotary motion to linear motion, and in piston rods, which translate the action of fluid power to linear motion. It describes the process of examining a failed shaft to guide the direction of failure investigation and corrective action. Fatigue failures in shafts, such as bending fatigue, torsional fatigue, contact fatigue, and axial fatigue, are reviewed. The article provides information on the brittle fracture, ductile fracture, distortion, and corrosion of shafts. Abrasive wear and adhesive wear of metal parts are also discussed. The article concludes with a discussion on the influence of metallurgical factors and fabrication practices on the fatigue properties of materials, as well as the effects of surface coatings.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... in <xref rid="a0006810-f40" ref-type="fig">Fig. 40</xref> Table 2 Chemical analyses of steel shaft and stainless-steel end cap in Fig. 40 Element Chemical analysis of steels in shaft assembly Nominal composition of type 316 stainless steel (a) ASTM A105, grade 2, steel shaft Type 316 stainless steel end cap...
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... installation torque. Investigation Typical failed fasteners are shown in Fig. 2(a) . Substantial necking accompanied all of the fractures. The fractographic features were consistent with dimple rupture, and the macroscopic necking is shown metallographically in Fig. 2(b) . The chemical composition...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... alloys Crack branching and irregularity maintained to higher Δ K Increased resistance to region II fatigue crack growth Fibering in aluminium alloys Alignment of grains and particles Branching and irregularity much less when crack plane normal to short transverse direction Lower K Ic...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... at the normal installation torque. Investigation Typical failed fasteners are shown in Fig. 2(a) . All fractures showed substantial necking. Fractographic features were consistent with dimple rupture, and macroscopic necking is shown metallographically in Fig. 2(b) . The chemical composition...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
...: magnetic-particle inspection of ferrous metals, liquid-penetrant inspection, ultrasonic inspection, and sometimes eddy-current inspection. All these tests are used to detect surface cracks and discontinuities. Radiography is used mainly for internal examination. A photographic record of the results...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack...
Abstract
This article describes three design-life methods or philosophies of fatigue, namely, infinite-life, finite-life, and damage tolerant. It outlines the three stages in the process of fatigue fracture: the initial fatigue damage leading to crack initiation, progressive cyclic growth of crack, and the sudden fracture of the remaining cross section. The article discusses the effects of loading and stress distribution on fatigue cracks, and reviews the fatigue behavior of materials when subjected to different loading conditions such as bending and loading. The article examines the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... and composition Rolling-contact fatigue appears similar to wear in early stages Multiple intergranular fissures covered with reaction scale Grain faces may show porosity Metallographic inspection, 50 to 1000× (cross section) Grain distortion and flow near fracture Irregular...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001617
EISBN: 978-1-62708-227-3
...' opinion, is much better for examining fracture surfaces than is fiber-optic lighting. Fracture surfaces of outboard couplings, where cracks had been exposed to seawater, usually were uniformly corroded, but, in one case, bands of corrosion product with different colors were observed ( Fig. 7...
Abstract
Failures of various types of hydraulic couplings used to connect pipes in a naval vessel are described and used to illustrate some of the general procedures for failure analysis. Cracking of couplings, which were manufactured from nickel-aluminum- bronze extruded bar, occurred in both seawater and air environments. Cracks initiated at an unusually wide variety of sites and propagated in either longitudinal or circumferential directions with respect to the axis of the couplings. Fracture surfaces were intergranular and exhibited little or no sign of corrosion (for couplings cracked in air), and there was very limited plasticity. Macroscopic progression markings were observed on fracture surfaces of several couplings but were not generally evident. At very high magnifications, numerous slip lines, progression markings, and striations were observed. In a few cases, where complete separation had occurred in service, small areas of dimpled overload fracture were observed. It was concluded from these observations, and from comparisons of cracks produced in service with cracks produced by laboratory testing under various conditions, that cracking had occurred by fatigue. The primary cause of failure was probably the unanticipated presence of high-frequency stress cycles with very low amplitudes, possibly due to vibration, resonance, or acoustic waves transmitted through the hydraulic fluid. Secondary causes of failure included the presence of high tensile residual stresses in one type of coupling, undue stress concentrations at some of the crack-initiation sites, and overtorquing of some couplings during installation. Recommendations on ways to prevent further failures based on these causes are discussed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... 3D component. The advantages of this system include its ability to produce high-resolution features, internal passages, and maintain dimensional control. Lasers are typically ~100 W neodymium-doped yttrium-aluminum-garnet (Nd:YAG) lasers for polymer PBF. For metals, fiber lasers provide improved...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... that failed in tension because of overloading. Excessive wear on a 16-mm ( 5 8 -in.) diam 6 × 37 (6 strands of 37 wires each) fiber-core improved plow steel wire rope is described in Example 3 in this article. Corrosion failures are also relatively frequent because of the environments in which...
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.