Skip Nav Destination
Close Modal
Search Results for
dimensional inspection
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 133 Search Results for
dimensional inspection
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001905
EISBN: 978-1-62708-217-4
... and a companion, intact retaining band to ARL for inspection and analysis. Chemical analysis, dimensional verification, hardness testing, metallography, and tensile testing were performed to determine the cause for premature failure. The chemical composition of the components was compatible with the nominal...
Abstract
A bomb retaining ring fabricated from type 302 stainless steel unwrapped during a practice flight, causing the bomb fins to deploy. The retaining ring was able to unwrap itself because it was thinner and softer than required. Hardness testing, metallography, and tensile testing confirmed that the component was in the annealed condition and not in the required work-hardened 1/4-hard condition.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001093
EISBN: 978-1-62708-214-3
.... The bolt was quenched in water, dimensionally inspected, and returned to the production lot instead of being scrapped. The heavy decarburization layer on the crack surface supports this scenario. Remedial Action The process chart for hot heading was changed from water quenching to air cooling...
Abstract
A heat-treated, cadmium-plated AISI 8740 steel bolt broke through the head-to-shank fillet while being handled during assembly. Fractographic and metallographic examination of the bolt traced the cause of failure to quench cracking, which occurred when the part was water cooled following hot heading and prior to the production run. The process chart for hot heading was changed from water quenching to air cooling following the forming operation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047080
EISBN: 978-1-62708-235-8
... MPa (1000 psi) and dimensionally inspected. Investigation Visual inspection showed that some of the tubes failed by blow out of a section of the wall; some blow outs produced edges with sharp cleavage planes typical of a shear failure in a single crystal. Figure 1(a) shows an example believed...
Abstract
Several of the aluminum alloy 6061-T6 drawn seamless tubes (ASTM B 234, 2.5 cm (1.0 in.) OD with wall thickness of 1.7 mm (0.065 in.)) connecting an array of headers to a system of water-cooling pipes failed. The tubes were supplied in the O temper. They were bent to the desired curvature, preheated, then solution treated, water quenched, and then aged for 8 to 10 h. Analysis (visual inspection, slow-bend testing, 65x macrographic analysis, macroetching, spectrographic analysis, hardness tests, microhardness tests, tension tests, and microscopic examination) supported the conclusions that bending of the connector tubes in the annealed condition induced critical strain near the neutral axis of the tube, which resulted in excessive growth of individual grains during the subsequent solution treatment. Recommendations included bending the connector tubes in the T4 temper as early as possible after being quenched from the solution temperature. The tubes should be stored in dry ice after the quench until bending can be done. The tubes should be aged immediately after being formed. Flattening and slow-bend tests should be specified to ensure that the connector tubes had satisfactory ductility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046870
EISBN: 978-1-62708-217-4
... in operation and maintenance to prevent the use of oil containing any water through filling spouts or air vents. Also, polishing to remove pitting corrosion (but staying within specified dimensional tolerances) was recommended as a standard maintenance procedure for shafts with long service lives. Inspection...
Abstract
A hollow, splined alloy steel aircraft shaft (machined from an AMS 6415 steel forging – approximately the same composition as 4340 steel – then quenched and tempered to a hardness of 44.5 to 49 HRC) cracked in service after more than 10,000 h of flight time. The inner surface of the hollow shaft was exposed to hydraulic oil at temperatures of 0 to 80 deg C (30 to 180 deg F). Analysis (visual inspection, 15-30x low magnification examination, 4x light fractograph, chemical analysis, hardness testing) supported the conclusions that the shaft cracked in a region subjected to severe static radial, cyclic torsional, and cyclic bending loads. Cracking originated at corrosion pits on the smoothly finished surface and propagated as multiple small corrosion-fatigue cracks from separate nuclei. The originally noncorrosive environment (hydraulic oil) became corrosive in service because of the introduction of water into the oil. Recommendations included taking additional precautions in operation and maintenance to prevent the use of oil containing any water through filling spouts or air vents. Also, polishing to remove pitting corrosion (but staying within specified dimensional tolerances) was recommended as a standard maintenance procedure for shafts with long service lives.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048845
EISBN: 978-1-62708-229-7
...: An engineering stress analysis of the header, tube legs, and the associated piping system is conducted. Numerical analysis, a modern tool, can be used to determine which areas of the component should be tested and inspected during downtimes and to determine static and cyclic stresses accurately Dimensional...
Abstract
The maximum life of base-loaded headers and piping is not possible to be predicted until they develop microcracking. The typical elements of a periodic inspection program after the occurrence of the crack was described extensively. Cracks caused by creep swelling in the stub-to-header welds in the secondary superheater outlet headers (constructed of SA335-P11 material) of a major boiler were described as an example. The OD of the header was measured to detect the amount of swelling and found to have increased 1.6% since its installation. Ligament cracks extending from tube seat to tube seat were revealed by surface inspection. Cracks were found to originate from inside the header, extend axially in the tube penetrations and radially from those holes into the ligaments. Cracks in 94 locations, ranging from small radial cracks to full 360Ý cracks were revealed by dye-penetrant inspection. The unit was operated under reduced-temperature conditions and with less load cycling than previously until a redesigned SA335-P22 header was installed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090277
EISBN: 978-1-62708-229-7
... included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching...
Abstract
A rupture of a thirty-year-old U-tube on a steam generator for a closed-cycle pressurized-water nuclear power plant occurred, resulting in limited release of reactor water. A typical tube bundle can be over 9 m (30 ft) tall and 3 m (10 ft) in diam with over 3,000 22-mm (7/8-in.) diam Inconel Alloy 600 tubes. Tube support plates (TSP) separate the tubes and allow flow of the heating water/steam. Inconel Alloy 600 is susceptible to intergranular stress-corrosion cracking over time, so investigation included review of operational records, maintenance history, and procedures. It also included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching” of the U-tubes, combined with the operational stresses, caused high stresses at the location where the tube cracked. The stresses were consistent with those required to initiate and propagate a longitudinal crack.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001520
EISBN: 978-1-62708-235-8
... for a reheat treatment. For parts that cracked after pressure testing, excessive dimensional changes precluded the inclusion of a reheat treatment as a manufacturing step, and further failure was averted by carefully employing proper machining practices, avoiding abusive machining. Chromium plating...
Abstract
Two types of chromium-plated hydraulic cylinders failed by cracking on their outer surfaces. In one case, the parts had a history of cracking in the nominally unstressed, as-fabricated condition. In another, cracks were detected after the cylinders were subjected to a pressure impulse test. Both part types were made of 15-5 PH (UNS S15500) precipitation hardening stainless steel. Hydrogen embrittlement cracking was the likely cause of failure for both part types. Cracking of the as-fabricated parts was ultimately prevented by changing the manufacturing procedure to allow for a reheat treatment. For parts that cracked after pressure testing, excessive dimensional changes precluded the inclusion of a reheat treatment as a manufacturing step, and further failure was averted by carefully employing proper machining practices, avoiding abusive machining.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006772
EISBN: 978-1-62708-295-2
... Abstract Failure analysis is generally defined as the investigation and analysis of parts or structures that have failed or appeared to have failed to perform their intended duty. Methods of field inspection and initial examination are also critical factors for both reconstruction analysts...
Abstract
Failure analysis is generally defined as the investigation and analysis of parts or structures that have failed or appeared to have failed to perform their intended duty. Methods of field inspection and initial examination are also critical factors for both reconstruction analysts and materials failure analysts. This article focuses on the general methods and approaches from the perspective of a reconstruction analyst. It describes the elements of accident reconstruction, which have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The approach presented is that the analysis and reconstruction is based on the physical evidence. The article provides a brief review of some general concepts on the use and limitations of advanced data acquisition tools and computer modeling. Legal implications of destructive testing are discussed in detail.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001618
EISBN: 978-1-62708-219-8
... Sketch of strain lines resulting from assembly of bracket to tower The corrective action consisted of two options: bend the bracket as designed, or perform a dimensional inspection of the brackets and use proper-sized shims as necessary. Construction of this multistate powerline was halted for six...
Abstract
Arms bolted to powerline towers were falling off two weeks after installation. Metallurgical and chemical analysis performed on the base metal, weld zone, and heat-affected zone showed acceptable quality material. Residual stress appeared to be responsible for the high failure rate. The sources of residual stress included welding, environment, and assembly operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
... A fully flow formed tube from the non-electroslag remelt grade SAE 4130 steel with a total reduction of 90% thickness often cracked after pressure testing and dimensional inspection. A long, sharp, longitudinal through wall crack developed in the tube as shown in Fig. 5 . Metallurgical investigation...
Abstract
Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048299
EISBN: 978-1-62708-229-7
... cause of failure was concluded to be exfoliation of the scale from the ID surface of the tube. Creep failures were interpreted to be caused by localized temperatures higher than the maximum service temperature. Replacement of the affected tubes was recommended. Inspection of the tubes by radiography...
Abstract
Pendant-style reheater, constructed of ASME SA-213, grade T-11, steel ruptured. A set of four tubes, specified to be 64 mm OD x 3.4 mm minimum wall thickness was examined. A small quantity of loose debris was removed from the inside of one of the tubes. The major constituent was revealed by EDS analysis of the debris to be iron with traces of phosphorus, manganese, sodium, calcium, copper, zinc, potassium, silicon, chromium, and molybdenum. Thus the debris was interpreted to be the scale from ID of the tube with boiler feedwater chemicals from the attemperation spray. The likely cause of failure was concluded to be exfoliation of the scale from the ID surface of the tube. Creep failures were interpreted to be caused by localized temperatures higher than the maximum service temperature. Replacement of the affected tubes was recommended. Inspection of the tubes by radiography to find the circuits with the greatest accumulation of debris and replacing them as necessary was recommended on an annual basis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001910
EISBN: 978-1-62708-217-4
... analyses were conducted on the individual components: visual examination, surface finish, dimensional verification, magnetic particle inspection, metallography, chemical analysis, microhardness testing, macrohardness testing, coating thickness (where applicable), decarburization measurement (where...
Abstract
Breech bolt assemblies from the Gatling guns used on fighter aircraft failed during firing tests. Metallography of the failed components revealed considerable decarburization which resulted in a loss of surface hardness. It was also determined that the maraging steel components were not in the nitrided condition as was required. This resulted in lower wear and fatigue resistance. These components also had a silicon content nearly double of that specified. The high silicon content lowered the notch tensile strength and toughness of the components.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090451
EISBN: 978-1-62708-218-1
... to alternating temperatures of -40 and 180 deg C (-40 and 360 deg F)). Prior to molding, the resin had reportedly been dried at 135 deg C (275 deg F). The drying process usually lasted 6 h, but occasionally, the material was dried overnight. Comparison investigation (visual inspection, 20x SEM views, micro-FTIR...
Abstract
Cracking occurred within the plastic jacket (injection molded from an impact-modified, 15% glass-fiber-reinforced PET resin.) of several assemblies used in a transportation application during an engineering testing regimen which involved cyclic thermal shock (exposing the parts to alternating temperatures of -40 and 180 deg C (-40 and 360 deg F)). Prior to molding, the resin had reportedly been dried at 135 deg C (275 deg F). The drying process usually lasted 6 h, but occasionally, the material was dried overnight. Comparison investigation (visual inspection, 20x SEM views, micro-FTIR, and analysis using DSC and TGA) with non-failed parts supported the conclusion that that the failure was via brittle fracture associated with the exertion of stresses that exceeded the strength of the resin as-molded caused by the disparity in the CTEs of the PET jacket and the mating steel sleeve. The drying process had exposed the resin to relatively high temperatures, which caused substantial molecular degradation, thus limiting the part's ability to withstand the stresses. The drying temperature was found to be significantly higher than the recommendation for the PET resin, and the testing itself exposed the parts to temperatures above the recognized limits for PET.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001081
EISBN: 978-1-62708-214-3
... under estimated, which led to low-cycle fatigue cracking earlier than expected. Fracture mechanics analysis of the disks was carried out to assess their damage tolerance and to predict safe inspection intervals. Fatigue life Fracture mechanics Gas turbine engines Jet planes Low-cycle fatigue...
Abstract
Several compressor disks in military fighter and trainer aircraft gas turbine engines cracked prematurely in the bolt hole regions. The disks were made of precipitation-hardened AM355 martensitic stainless steel. Experimental and analytical work was performed on specimens from the fifth-stage compressor disk (judged to be the most crack-prone disk in the compressor) to determine the cause of the failures. Failure was attributed to high-strain low-cycle fatigue during service. It was also determined that the cyclic engine usage assumed in the original life calculations had been under estimated, which led to low-cycle fatigue cracking earlier than expected. Fracture mechanics analysis of the disks was carried out to assess their damage tolerance and to predict safe inspection intervals.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001583
EISBN: 978-1-62708-217-4
...% of the fracture surface. Dimensional Inspection The threads of each specimen were inspected utilizing an optical comparator. According to the governing specification, the thread dimensions were required to conform to MIL-S-8879. Table 2 of this specification (Fine Thread Series) lists the dimensional...
Abstract
The purpose of this investigation was to determine the root cause of the differences noted in the fatigue test data of main rotor spindle assembly retaining rods fabricated from three different vendors, as part of a Second Source evaluation process. ARL performed dimensional verification, accessed overall workmanship, and measured the respective surface roughness of the rods in an effort to identify any discrepancies. Next, mechanical testing was performed, followed by optical and electron microscopy, and chemical analysis. Finally, ARL performed laboratory heat treatments at the required aging temperature and follow-up mechanical testing.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003523
EISBN: 978-1-62708-180-1
... such as the one shown in Fig. 1 , where the sequence of events leading to the incident must be understood in order to properly focus further examination and evaluation by specialists such as materials failure analysts. Methods of field inspection and initial examination also are critical factors for both...
Abstract
This article focuses on the general methods and approaches from the perspective of a reconstruction analyst and includes discussions relevant to materials failure analysts at the incident scene. The elements of accident reconstruction are described. These have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The article provides a brief review of some general concepts on the use of modeling which can be a very powerful tool for information pertaining to the reconstruction of an accident where the model can be a physical, mathematical, or logical representation of a physical system or process.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001028
EISBN: 978-1-62708-214-3
..., and measurements were made to determine the degree of distortion. The results of these inspections are shown in Fig. 3 . Fig. 3 Results of dimensional measurements along a transverse section of the endcap through the center of the failed spot weld. Downward permanent deflection of the endcap outer skin...
Abstract
Several AISI type 321 stainless steel welded oil tank assemblies used on helicopter engine systems began to leak in service. One failure, a fracture on the aft side of a spot weld, was submitted for analysis. SEM fractography examination revealed fatigue failure. The failure initiated at an overload fracture near the root of the weld and was followed by mode III fatigue crack propagation (tearing) around the periphery of the weld. The initial overload fracture was caused by a high external load, which produced a concentrated stress and fracture at the weld root. The subsequent fatigue fracture was caused by engine vibrations during operation of the aircraft. Fracture characteristics indicated that the fatigue would not have occurred if the initial damage had not taken place.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
..., oblique/tangential lighting at varying oblique angles and orientations is often useful in evaluating the fracture conditions present. Inspection and photographic documentation of as-manufactured surfaces is, however, benefited by illumination by diffused and reflected lighting, especially if the component...
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
... shell courses joined the longitudinal weld for the second shell course ( Fig. 4 ). The flaw was oriented vertically (parallel to the longitudinal seam and perpendicular to the circumferential seam). Inspection upon reconstruction of the tank only included new weld seams; therefore, this joint...
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
1