Skip Nav Destination
Close Modal
By
K.M. Rajan, K. Narasimhan
By
S.S. Akhtar, A.F.M. Ari
By
Rakesh Kaul, N.G. Muralidharan, N. Raghu, K.V. Kasiviswanathan, Baldev Raj
By
Wei Zheng, Adam Kramschuster, Alex Jordan
By
Charles R. Manning, Jr., Thomas C. Wenzel
By
G.E. Totten, M. Narazaki, R.R. Blackwood, L.M. Jarvis
By
S. Lampman, M. Mulherin, R. Shipley
By
J.A. Pineault, M. Belassel, M.E. Brauss
By
George M. Goodrich, Richard B Gundlach, Robert B. Tuttle, Charles V. White
By
Harry R. Millwater, Jr., Paul H. Wirsching
By
L. Scott Chumbley, Larry D. Hanke
Search Results for
dimensional accuracy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 66
Search Results for dimensional accuracy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
An Investigation of the Development of Defects During Flow Forming of High Strength Thin Wall Steel Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
... A 370 ( Fig. 3 ). The specified and achieved mechanical properties and dimensional accuracies are presented in Table 2 . Flow forming sequence with thickness and hardness variations in each pass Table 1 Flow forming sequence with thickness and hardness variations in each pass Pass...
Abstract
Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes.
Book Chapter
Failure of a High-Speed Steel Twistdrill
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089429
EISBN: 978-1-62708-223-5
... rating being “slight to medium.” A “medium” rating was permitted. Heat treatment and nitriding practices were consistent with those published by ASM International. After heat treatment, the drills were within the specified range of 64 to 66 HRC. Some twenty other inspections for dimensional accuracy...
Abstract
The failure of a high speed steel twist drill which caused injury to the user was investigated thoroughly to settle a legal suit. The drill was being used to remove a stud that broke in the vertical wall of a metalworking machine (upsetter) after drilling a pilot hole. The drill had shattered suddenly with a bang which caused a chip to be dislodged and cause the injury. A large nonmetallic inclusion parallel to the axis near the center of the drill was revealed in an unetched longitudinal section. Carbide bands in a martensitic matrix were indicated in an etched sample. It was concluded by the plaintiff's metallurgist that the failed drill was defective as the steel contained nonmetallic inclusions and carbide segregation which made it brittle. It was revealed by the defendant that the twist drill met all specifications of M1 high-speed steel and investigated several other drills without failure to prove that the failure was caused by use in excessive conditions. It was revealed by examination that the point of the broken drill was not the original point put on at manufacture but came from regrinding. Both technical and legal details have been discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006772
EISBN: 978-1-62708-295-2
... in a digital format similar to a point cloud not only allows for virtual examination of the scene but also provides dimensional information. Accuracy of the measurements obtained from a point cloud are dependent on the technology deployed (sUAS or laser scanner) and the level of computational success...
Abstract
Failure analysis is generally defined as the investigation and analysis of parts or structures that have failed or appeared to have failed to perform their intended duty. Methods of field inspection and initial examination are also critical factors for both reconstruction analysts and materials failure analysts. This article focuses on the general methods and approaches from the perspective of a reconstruction analyst. It describes the elements of accident reconstruction, which have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The approach presented is that the analysis and reconstruction is based on the physical evidence. The article provides a brief review of some general concepts on the use and limitations of advanced data acquisition tools and computer modeling. Legal implications of destructive testing are discussed in detail.
Book Chapter
Fatigue Failure of Extrusion Dies: Effect of Process Parameters and Design Features on Die Life
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
... in surface configuration and dimensional accuracy of the extruded product. Hence, it is not advisable to use temperature above the nitriding temperature. The response of a billet to extrusion process can be influenced by the speed of deformation and hence strain rate which are proportional to each other...
Abstract
Several failed dies were analyzed and the results were used to evaluate fatigue damage models that have been developed to predict die life and aid in design and process optimization. The dies used in the investigation were made of H13 steels and fractured during the hot extrusion of Al-6063 billet material. They were examined to identify critical fatigue failure locations, determine corresponding stresses and strains, and uncover correlations with process parameters, design features, and life cycle data. The fatigue damage models are based on Morrow’s stress and strain-life models for flat extrusion die and account for bearing length, fillet radius, temperature, and strain rate. They were shown to provide useful information for the analysis and prevention of die failures.
Book Chapter
Failure of a Copper Condenser Dashpot
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001312
EISBN: 978-1-62708-215-0
... Procedure and Results Non-Destructive Evaluation Dimensional Measurement Approximate dimensional profiles of the component before and after failure are present in Fig. 3 . The two end cups and central tubular region of the dashpot did not show any plastic deformation, whereas the tubular regions...
Abstract
A copper condenser dashpot in a refrigeration plant failed prematurely. The dashpot was a long tubular component with a cup brazed at each end. Stereomicroscopic examination of the fracture surface at low magnification revealed a typical ductile mode of failure. The failure was attributed to insufficient component thickness, which made the dashpot unable to withstand internal operating pressure, and to extensive annealing in the heat-affected zones of the brazed joints. It was recommended that the condenser dashpot design take into account the annealing effects of brazing. Hydrostatic testing at a pressure times greater than the maximum operating pressure prior to placing the component in service was also suggested.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001580
EISBN: 978-1-62708-229-7
... Abstract Laser surface mapping of a canister closure weld provided data that was used to generate three-dimensional images of the weld failure. These images were invaluable in that they allowed people who did not have access to the canister to see the anomaly in great detail. This aided...
Abstract
Laser surface mapping of a canister closure weld provided data that was used to generate three-dimensional images of the weld failure. These images were invaluable in that they allowed people who did not have access to the canister to see the anomaly in great detail. This aided in the scientific examination while reducing exposure to the radiologically contaminated canister. Precise measurements from the surface maps provided useful information about the location of weld features that were used in the examination of the weld failure. Laser surface mapping proved to be a powerful addition to the nondestructive examination tools available for surface phenomena.
Book Chapter
Failures Related to Casting
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Book Chapter
Polymer Processing—An Introduction
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... lidded containers where dimensional accuracy and tight tolerances are required for mated surfaces. Parts manufactured via negative forming ( Fig. 21b ) tend to be thickest at their rim, becoming progressively thinner along the walls, and thinnest at the bottom corners where the sheet was drawn down...
Abstract
This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design guidelines, and special processes. It also covers the functions of the extruder, webline handling, mixing and compounding operations, and process troubleshooting. Thermoforming and mold design are covered. Various other technologies for polymer processing covered in this article are blow molding, rotational molding, compression molding, transfer molding, hand lay-up process, casting, and additive manufacturing.
Book Chapter
Modeling and Accident Reconstruction
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003523
EISBN: 978-1-62708-180-1
... in a manner that is more easily understandable. Both of these aforementioned models can be represented two dimensionally, as a drawing, or three dimensionally, using construction materials. Common examples of illustrative models used by engineering students include phase diagrams, crystal lattices...
Abstract
This article focuses on the general methods and approaches from the perspective of a reconstruction analyst and includes discussions relevant to materials failure analysts at the incident scene. The elements of accident reconstruction are described. These have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The article provides a brief review of some general concepts on the use of modeling which can be a very powerful tool for information pertaining to the reconstruction of an accident where the model can be a physical, mathematical, or logical representation of a physical system or process.
Book Chapter
Failures Related to Heat Treating Operations
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... microstructure phase transformations quenching quench-process design residual stress retained austenite steel stress tempering HEAT TREATING—of all the various steel processing methods—has the greatest overall impact on control of microstructure, properties, residual stresses, and dimensional...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Book Chapter
Nondestructive Testing in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Book Chapter
X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... ( Ref 13 ). The importance of the XRD method resides in its ability to measure residual and applied stress with high spatial resolution, speed, and excellent accuracy, and, in many cases, measurements can be performed nondestructively ( Ref 14 ). The measurement of residual stress via XRD is generally...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided. draw panel analysis fractures necks...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Book
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Book Chapter
Failures Related to Castings
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
..., a large undercooling, and usually at thin casting sections. The dimensional configuration of type D flakes resembles the shape of sea coral. Gray iron castings are susceptible to most of the imperfections generally associated with castings, with additional problems resulting from the use of relatively...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... tool in structural analysis, its usefulness and accuracy depend on the ability to create accurate, realistic models of a component that cannot be analyzed using traditional techniques. Such a model usually consists of large complex geometry with hundreds if not thousands of nodes and elements...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... to moderately complex degrees-of-freedom problems). As the result of increased computing capability, more and more problems are solved with accurate details, and full-scale three-dimensional FEA has become very much the norm in the majority of problems (as opposed to spending considerable amounts of time...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Book Chapter
Analysis Methods for Probabilistic Life Assessment
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
...; then the joint PDF is simply the product of the individual density functions. A second and more significant reason why this integral is difficult to solve is that it is often of high dimension. The dimension of the integral is the number of random variables, for example, a ten dimensional integral...
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... and it is this trait that gives SEM images their characteristic three-dimensional appearance. The large depth of field is made possible by the relationship between the small size of the electron probe used as related to the size of the imaging pixel determined by the operating magnification. This is explained in more...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Book Chapter
Scanning Electron Microscopy for Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... than 100,000×). The ability to obtain in-focus images of rough samples over a large change in vertical height is termed depth of field, and it is this trait that gives SEM images their characteristic three-dimensional appearance. The large depth of field is made possible by the relationship between...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
1