Skip Nav Destination
Close Modal
Search Results for
dies
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 101 Search Results for
dies
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
... Abstract This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold...
Abstract
This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps, unconsolidated interiors, and carbide segregation and poor carbide morphology are reviewed with illustrations.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
... ( b ) Fig. 1 Extrusion loading cycles Fig. 2 Failed dies collected from local extrusion industry Fig. 5 Flow curves of Al-6063 at different temperatures and strain rates used in the simulation Fig. 7 Variation of die life cycles (number of billets extruded...
Abstract
Several failed dies were analyzed and the results were used to evaluate fatigue damage models that have been developed to predict die life and aid in design and process optimization. The dies used in the investigation were made of H13 steels and fractured during the hot extrusion of Al-6063 billet material. They were examined to identify critical fatigue failure locations, determine corresponding stresses and strains, and uncover correlations with process parameters, design features, and life cycle data. The fatigue damage models are based on Morrow’s stress and strain-life models for flat extrusion die and account for bearing length, fillet radius, temperature, and strain rate. They were shown to provide useful information for the analysis and prevention of die failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0009222
EISBN: 978-1-62708-180-1
... probably are secondary and developed because the structure is particularly sensitive to grinding. Fig. 6 Nonuniform, low quenching temperatures can cause bald-head fractures in carbon-tool steel dies. Fig. 4 A properly heat treated tool of manganese oil-hardening steel has a martensitic...
Abstract
This article describes the six fundamental factors that decide a tool's performance. These are mechanical design, grade of tool steel, machining procedure, heat treatment, grinding, and handling. A deficiency in any one of the factors can lead to a tool and die failure. The article presents a seven-step procedure to be followed when looking for the reason for a failure. A review of the results of the seven-point investigation may lead directly to the source of failure or narrow the field of investigation to permit the use of special tests.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001378
EISBN: 978-1-62708-215-0
..., or unspecified) fracture Background Two 38 mm (1.5 in.) diam plain carbon steel threaded stud bolts were examined to determine their serviceability. They were part of a steel mold die assembly from a plastics molding operation. Applications The plastic molding company involved moves its steel dies...
Abstract
Two 38 mm (1.5 in.) diam threaded stud bolts that were part of a steel mold die assembly from a plastics molding operation were examined to determine their serviceability. Chemical analysis showed the material to be a plain carbon steel that approximated 1045. Visual examination revealed evidence of severe hammer blows to the clevis and boss areas and a gap between the die and the underside of the boss. Magnetic particle inspection showed cracks at the thread roots that, when examined metallographically, were found to contain MnS stringers. The cracking of the threads was attributed to a poor stud bolt design, which allowed a high stress concentration to occur at the base of the threads upon application of a lateral load. It was recommended that bolts of a new design that incorporated a stress-relieving groove be used. Threading of the bolt to eliminate the gap between the lower face of the boss and the die and an improved method of inserting or removing the bolt to avoid hammering (use of a wrench on a square or hexagonal boss) were also recommended.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
... and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup. cold working dies failure...
Abstract
This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001162
EISBN: 978-1-62708-220-4
Abstract
Some 99.90 pure tin tubes (0.15 mm thick) used for packaging a chemical compound cracked on bending and underwent brittle fracture prior to filling, while others remained ductile and showed no sign of failure. Examination showed that specimens prepared by mechanical methods such as electrolytic and hand polishing and the vibration method resulted in poor edge and crack edge definition due to material thickness. Etching experiments involved a grain surface attack and hence produced a rather strong surface relief from which the grain boundary cracks could again not clearly be differentiated. The sections were therefore examined unetched in polarized light. The microstructure of the cracked tubes was shown to have much smaller grains than the ductile and showed cracks from the surface down along the grain boundaries. Material hardness also differed between the unusable tubes and the ductile, and chemical analysis showed a higher level of aluminum in the brittle specimens. Failure obviously occurred due to the high material aluminum content that increased hardness which then caused embrittlement at the surface which led to cracks or fracture on bending. Since no explanation of how the aluminum entered the tin was available, no recommendations could be made.
Image
in Fatigue Failure of Extrusion Dies: Effect of Process Parameters and Design Features on Die Life
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 2 Failed dies collected from local extrusion industry
More
Image
Published: 30 August 2021
Fig. 10 Grinding cracks caused by failure to temper a part. (a) Two dies made from AISI D2 tool steel that cracked after finish grinding (cracks accentuated with magnetic particles). (b) Macroetching (10% aqueous nitric acid) of the end faces revealed grinding scorch. These dies were
More
Image
in Failures Related to Hot Forming Processes
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 18 Illustration of a closure error where the dies have not been brought together to the appropriate thickness dimension
More
Image
Published: 01 June 2019
Fig. 5 SEM fractograph of the fracture surface as in Fig. 4 , showing equiaxed dimpled rupture
More
Image
in Forming Process Anomalies in Diesel Fuel Injection Control Sleeve
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 7 Application-life diagram showing effects of manufacturing-caused surface discontinuities on service life
More
Image
in On-Site Nondestructive Metallographic Examination of Materials
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Di-Profiler Model FNC unit used in all of the metallographic preparation of the titanium weldment.
More
Image
in On-Site Nondestructive Metallographic Examination of Materials
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 2 The grinding/polishing head of the Di-Profiler which is driven by the motor through a flexible shaft.
More
Image
in Failure Analysis of a Radio-Activated Accelerator Component
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 10 The waterside of the inner shell including attached wires that served to direct cooling water flow
More
Image
Published: 01 January 2002
Fig. 2 Definitions of (a) probability density function (PDF) and (b) cumulative distribution function (CDF)
More
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 29 Effect of heat treatment temperature on (a) hardness (HRC) and (b) x-ray diffraction (XRD) peak integral breadth
More
Image
Published: 01 December 1993
Fig. 8 Typical unetched metallographic cross section of a failed stamped brake disc 6.4 mm (0.25 in.) radius fillet, displaying small, round manganese sulfide inclusions. 63×.
More
Image
in Failure Analysis of Heat Exchangers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 36 Distribution of failed tubes and location of specimens. (a) Failed tube distribution. (b) Specimen location. Source: Ref 15
More
Image
Published: 01 December 1993
Fig. 7 The secondary crack through the third superheater tube failure. Note the distinct intergranular nature of the crack with development of an oxide type corrosion product along the grain boundaries. 400×
More
Image
in Fatigue Fracture of Aircraft Engine Compressor Disks
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 13 Typical results of microhardness measurements at crack tip of compressor disk bolt hole crack.
More
1