Skip Nav Destination
Close Modal
Search Results for
design tools
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 238 Search Results for
design tools
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006938
EISBN: 978-1-62708-395-9
.... This article focuses on design-related failures in products utilizing polymeric materials, and reviews important considerations of the design envelope of plastic parts. The article provides a non-exhaustive list and descriptions of design tools that can support the design process and the prevention of design...
Abstract
A design may be improvable without presenting an unacceptable risk related to safety or performance. However, design-related failures can result from an oversight in performing one of the major design activities or from a failure to balance the competing demands inherent to part design. This article focuses on design-related failures in products utilizing polymeric materials, and reviews important considerations of the design envelope of plastic parts. The article provides a non-exhaustive list and descriptions of design tools that can support the design process and the prevention of design-related failures. It also discusses the most common causes of design-related failures of plastic parts. The article can assist in both failure analysis and in the prevention of failures in which design may be a contributing factor or a root cause.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001571
EISBN: 978-1-62708-229-7
... Abstract The accident at Three Mile Island Unit No. 2 on 28 March 1979 was the worst nuclear accident in US history. By Jan 1990, it was possible to electrochemically machine coupons from the lower head using a specially designed tool. The specimens contained the ER308L stainless steel cladding...
Abstract
The accident at Three Mile Island Unit No. 2 on 28 March 1979 was the worst nuclear accident in US history. By Jan 1990, it was possible to electrochemically machine coupons from the lower head using a specially designed tool. The specimens contained the ER308L stainless steel cladding and the A533 Grade B plate material to a depth of about mid-wall. The microstructures of these specimens were compared to that of specimens cut from the Midland, Michigan reactor vessel, made from the same grade and thickness but never placed in service. These specimens were subjected to known thermal treatments between 800 and 1100 deg C for periods of 1 to 100 min. Microstructural parameters in the control specimens and in those from TMI-2 were quantified. Selective etchants were used to better discriminate desired microstructural features, particularly in the cladding. This report is a progress report on the quantification of changes in both the degree of carbide precipitation and delta ferrite content and shape in the cladding as a function of temperature and time to refine the estimates of the maximum temperatures experienced.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0009222
EISBN: 978-1-62708-180-1
.... These are mechanical design, grade of tool steel, machining procedure, heat treatment, grinding, and handling. A deficiency in any one of the factors can lead to a tool and die failure. The article presents a seven-step procedure to be followed when looking for the reason for a failure. A review of the results...
Abstract
This article describes the six fundamental factors that decide a tool's performance. These are mechanical design, grade of tool steel, machining procedure, heat treatment, grinding, and handling. A deficiency in any one of the factors can lead to a tool and die failure. The article presents a seven-step procedure to be followed when looking for the reason for a failure. A review of the results of the seven-point investigation may lead directly to the source of failure or narrow the field of investigation to permit the use of special tests.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001120
EISBN: 978-1-62708-214-3
... a die for die casting of aluminum was submitted for metallurgical analysis. The designated material was premium-quality H13 tool steel. The heat treatment and expected hardness were not specified. The die reportedly fractured after 700 shots in service. The broken segment was submitted to a laboratory...
Abstract
A segment from a premium-quality H13 tool steel die for die casting of aluminum failed after only 700 shots. The segment was subjected to visual, macroscopic, hardness, and metallographic testing. The investigation revealed that failure occurred as a result of fatigue at an electrical-discharge-machined surface where the resulting rehardened layer had not been removed. This rehardened layer had cracked, providing a source for fatigue initiation.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006868
EISBN: 978-1-62708-395-9
... Abstract This article presents the benefits of selecting plastics for products to be manufactured. It discusses the four key considerations for plastic part design: material, process, tooling, and design. The article provides a detailed discussion of the development sequence for plastic parts...
Abstract
This article presents the benefits of selecting plastics for products to be manufactured. It discusses the four key considerations for plastic part design: material, process, tooling, and design. The article provides a detailed discussion of the development sequence for plastic parts. The basis for the development sequence is twofold: first, to create the best solution for the application, and second, to minimize potential project risks through careful and thoughtful work habits.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
... Abstract This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides...
Abstract
This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides general design rules for the plastic forming processes covered. It also discusses the steps involved in design validation and verification.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
... and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup. cold working dies failure...
Abstract
This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
...-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps...
Abstract
This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps, unconsolidated interiors, and carbide segregation and poor carbide morphology are reviewed with illustrations.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... function). Therefore, failure analysts need to understand the underlying principles and practices of design and materials selection as basic tools in failure prevention. However, failure analysts also recognize that the synergistic effects of service conditions, manufacturing effects, and material...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
..., failure analysts need to understand the underlying principles and practices of design and materials selection as basic tools in failure prevention. However, failure analysts also recognize that the synergistic effects of service conditions, manufacturing effects, and material characteristics...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001783
EISBN: 978-1-62708-241-9
...Composition of D2 tool steel [<xref rid="c9001783-ref3" ref-type="bibr">3</xref>] Table 1 Composition of D2 tool steel [ 3 ] Element C Mn Cr Si V Mo Ni Fe Percentage 1.50 0.5 12.00 0.5 1.10 1.00 0.30 83.0 Composition of A2 tool steel...
Abstract
An aluminum bronze bushing that serves as a guide in a crimping machine began to fail after 50,000 cycles or approximately two weeks of operation. Until then, typical run times had been on the order of months. Although the bushings are replaceable and relatively inexpensive, the cost of downtime adds up quickly while operators troubleshoot and swap out worn components. Initially, the quality of the bushings came into question, but after a detailed analysis of the entire crimping mechanism, several other issues emerged that were not previously considered. As a result, the investigation provides information on not only better materials, but also design changes intended to reduce wear and increase service life.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
... obtained from simulation [ 6 ]. A very important factor contributing to the performance and economics (efficiency and quality) of any hot metalforming process is the service life of tooling. Product rework and rejects can be traced back to various defects spread over the die life cycle: die design, die...
Abstract
Several failed dies were analyzed and the results were used to evaluate fatigue damage models that have been developed to predict die life and aid in design and process optimization. The dies used in the investigation were made of H13 steels and fractured during the hot extrusion of Al-6063 billet material. They were examined to identify critical fatigue failure locations, determine corresponding stresses and strains, and uncover correlations with process parameters, design features, and life cycle data. The fatigue damage models are based on Morrow’s stress and strain-life models for flat extrusion die and account for bearing length, fillet radius, temperature, and strain rate. They were shown to provide useful information for the analysis and prevention of die failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... techniques are used. This is where finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. Finite-element analysis is one of the most common tools used by design engineers. It has application in the structural/mechanical fields...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047840
EISBN: 978-1-62708-223-5
.... As a corrective measure, the hole through the square end of the mandrel was incorporated into the design of the tool and was drilled and reamed before heat treatment and specified hardness of the threaded portion and square end of the mandrel was reduced. Drilling Electric discharge machining Rockwell...
Abstract
The A2 tool steel mandrel, part of a rolling tool used for mechanically joining two tubes was fractured after making five rolled joints. A 6.4 mm diam hole was drilled by EDM through the square end of the hardened mandrel due to difficulty was experienced in withdrawing the tool. The fracture progressed into the threaded section and formed a pyramid-shape fragment after it was initiated at approximately 45 deg through the hole in the square end. An irregular zone of untempered martensite with cracks radiating from the surface of the hole (result of melting around hole) was revealed by metallographic examination. A microstructure of fine tempered martensite containing some carbide particles was exhibited by the core material away from the hole. Brittle fracture characteristics with beach marks were exhibited by the fracture surfaces which is characteristic of a torsional fatigue fracture. As a corrective measure, the hole through the square end of the mandrel was incorporated into the design of the tool and was drilled and reamed before heat treatment and specified hardness of the threaded portion and square end of the mandrel was reduced.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
..., design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... Abstract This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
... (car bumpers, instrument panels, football helmets, tool housings) High flexural modulus (car structures, boat hulls, electrical component housings, pallets); can be achieved by material or design Low flexural modulus (pads, balls, ski boots, shoes) Resilience (seat pads, springs, flexible car...
Abstract
Manufacturing process selection is a critical step in plastic product design. The article provides an overview of the functional requirements that a part must fulfil before process selection is attempted. A brief discussion on the effects of individual thermoplastic and thermosetting processes on plastic parts and the material properties is presented. The article presents process effects on molecular orientation. It also illustrates the thinking that goes into the selection of processes for size, shape, and design factors. Finally, the article describes how various processes handle reinforcement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047779
EISBN: 978-1-62708-223-5
... specified for the shafts was a free-machining grade of A6 tool steel. Fig. 1 A6 tool steel tube-bending-machine shaft that failed by fatigue fracture. Section A-A: Original and improved designs for fillet in failure region. Dimensions are in inches. View B: Fracture surface showing regions of fatigue...
Abstract
Two A6 tool steel (free machining grade) shafts, parts of a clamping device used for bending 5.7 cm OD tubing on an 8.6 cm radius, failed simultaneously under a maximum clamping force of 54,430 kg. The shaft was imposed with cyclic tensile stresses due to the clamping force and unidirectional bending stresses resulting from the nature of operation. Nonmetallic oxide-sulfide segregation was indicated by microscopic examination of the edge of the fracture surface. Both smooth and granular areas were revealed on visual examination of the fracture. The shaft was subjected to a low overstress as the smooth-textured fatigue zone was relatively large compared with the crystalline textured coarse final-fracture zone. The fatigue crack was nucleated by the nonmetallic inclusion that intersected the surface and initiated in the 0.25 mm radius fillet at a change in section due to stress concentration. To minimize this stress concentration, a larger radius fillet shaft at the critical change in section was suggested as corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001732
EISBN: 978-1-62708-218-1
... Abstract Statistical techniques provide the design engineer with a powerful tool for the analysis of failure data. By means of an actual case study, steps required to design a test yielding statistically meaningful data and procedures used in graphical analysis of results are presented...
Abstract
Statistical techniques provide the design engineer with a powerful tool for the analysis of failure data. By means of an actual case study, steps required to design a test yielding statistically meaningful data and procedures used in graphical analysis of results are presented. The Weibull distribution is the statistical model used as a basis for these techniques. This method of failure analysis provides the engineer with clear, positive design direction.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... that may result in premature failure of the joints. Finite element analysis is an ideal design tool for analyzing small integrated circuit-chip packages that come in an ever-changing variety of sizes, shapes, and applications. The chips are complex fabrications of silicon or other type of die material...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
1