Skip Nav Destination
Close Modal
Search Results for
design documentation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 154 Search Results for
design documentation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001697
EISBN: 978-1-62708-219-8
... Abstract Corrosion in potable and nonpotable water systems has been well documented in the past, and new research discusses innovations in water treatment and materials that are designed to enhance the quality of a water system, whether commercial or residential. This paper is a collection...
Abstract
Corrosion in potable and nonpotable water systems has been well documented in the past, and new research discusses innovations in water treatment and materials that are designed to enhance the quality of a water system, whether commercial or residential. This paper is a collection of five case histories on the failure of copper and steels as used in potable and non-potable water systems. The case histories cover a range of applications in which copper and steel products have been used. Copper and steel pipes are the two most commonly used materials in residential, commercial and industrial applications. The projects that are discussed cover these three important applications. The purpose of presenting this information is to allow the reader to gain an understanding of real life corrosion issues that affect plumbing materials, how they should have been addressed during the design of the water system, and how a water system should be maintained during service. We share this information in the hope that the reader will gain some limited knowledge of the problems that exist, and apply that knowledge in designing or using water systems in day-to day life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001611
EISBN: 978-1-62708-219-8
... Abstract Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures...
Abstract
Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures. This article examines a case of cold cracking failure in the construction industry. Fortunately, the failure was identified prior to final erection of the structural members and the weld was successfully reworked. The article explains how various welding parameters, such as electrode/wire selection, joint design, and pre/postheating, played a role in the failure. Human factors and fabrication practices that contributed to the problem are covered as well.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006815
EISBN: 978-1-62708-329-4
.... That document is negotiated with inputs from: Specialized engineering departments (including aerodynamics, internal flows, heat transfer, mechanical design, structures, reliability, producibility, safety, repairability, and others) The airframer The intended final customer The marketing...
Abstract
The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause of failure. Next, the article discusses the steps involved in the engineering design process and explains the importance of considering the engineering design process. Information on failure modes and effects analysis is also provided. The article ends with a discussion on the consequence of management actions on failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006832
EISBN: 978-1-62708-329-4
..., a proactive approach to design safety can show the jury that the manufacturer attempted to “do the right thing” during product development. An effective way to establish this would be to show, either through documentation or testimony from the manufacturer, that the product was tested to measure performance...
Abstract
The purpose of this article is to assist the reader in understanding the role that an engineering expert witness plays in evaluating incidents related to product liability, so that he or she may become better acquainted with the role that an engineer plays in such litigation. The topics covered are admissibility of expert opinions, how to evaluate data, factual evidence, mandatory and voluntary standards, physical evidence, medical records, scientific literature, design decisions evaluation, environment of use, user's contribution, reports of opposing experts, report of findings, and deposition and trial testimonies.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006772
EISBN: 978-1-62708-295-2
... by investigators. This article provides a brief review of some general concepts on the use of advanced data-acquisition tools and computer modeling. There has been a dramatic improvement in the technology available to be used when investigating and documenting accidents since the last revision of this Volume...
Abstract
Failure analysis is generally defined as the investigation and analysis of parts or structures that have failed or appeared to have failed to perform their intended duty. Methods of field inspection and initial examination are also critical factors for both reconstruction analysts and materials failure analysts. This article focuses on the general methods and approaches from the perspective of a reconstruction analyst. It describes the elements of accident reconstruction, which have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The approach presented is that the analysis and reconstruction is based on the physical evidence. The article provides a brief review of some general concepts on the use and limitations of advanced data acquisition tools and computer modeling. Legal implications of destructive testing are discussed in detail.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003523
EISBN: 978-1-62708-180-1
... Laboratories (UL) standards for products Local and state building codes National electrical codes published by the NFPA National fire codes published by the NFPA American Society for Testing and Materials (ASTM) standards Elements of Accident Reconstruction Documentation and Preservation...
Abstract
This article focuses on the general methods and approaches from the perspective of a reconstruction analyst and includes discussions relevant to materials failure analysts at the incident scene. The elements of accident reconstruction are described. These have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The article provides a brief review of some general concepts on the use of modeling which can be a very powerful tool for information pertaining to the reconstruction of an accident where the model can be a physical, mathematical, or logical representation of a physical system or process.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006762
EISBN: 978-1-62708-295-2
... followed as designed, or was divergence necessary? Were all graphics properly captioned? Were scales included with all photo documentation? Were units used consistently? Was the equipment used in the investigation documented and in calibration? Is all information in the report suitable...
Abstract
As a failure investigation progresses, the time arrives when the data and results of the various testing and analyses are compiled, compared, and interpreted. Data interpretation should be relatively straightforward for results that align well. However, interpretation can be challenging when results from various tests seem contradictory or inconclusive. Regardless, conclusions must eventually be drawn from the data. This article discusses the processes involved in reviewing data, formulating conclusions, failure analysis report preparation and writing, and providing recommendations and follow-up with appropriate personnel to prevent future failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003502
EISBN: 978-1-62708-180-1
..., then the design process is flawed from the start. Frequently it is found that the real design problem is never clearly defined, is incorrectly defined, or the wrong problem is identified, as described in the introductory example. This can be investigated by reference to the original bid documents or equipment...
Abstract
This article provides assistance to a failure analyst in broadening the initial scope of the investigation of a physical engineering failure in order to identify the root cause of a problem. The engineering design process, including task clarification, conceptual design, embodiment design, and detail design, is reviewed. The article discusses the design process at the personal and project levels but takes into consideration the effects of some higher level influences and interfaces often found to contribute to engineering failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003503
EISBN: 978-1-62708-180-1
... in Fig. 2 . This type of hierarchical model reflects the way in which the system design develops by first defining the system functions, then subdividing the system into smaller subsystems. The levels in the model are often called levels of indenture —a result of documentation techniques in which...
Abstract
This article describes the methodology for performing a failure modes and effects analysis (FMEA). It explains the methodology with the help of a hot water heater and provides a discussion on the role of FMEA in the design process. The article presents the analysis procedures and shows how proper planning, along with functional, interface, and detailed fault analyses, makes FMEA a process that facilitates the design throughout the product development cycle. It also discusses the use of fault equivalence to reduce the amount of labor required by the analysis. The article shows how fault trees are used to unify the analysis of failure modes caused by design errors, manufacturing and maintenance processes, materials, and so on, and to assess the probability of failure mode occurrence. It concludes with information on some of the approaches to automating the FMEA.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
... of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design. aircraft accident investigation aircraft...
Abstract
This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0089254
EISBN: 978-1-62708-225-9
... of low-alloy steel was suggested as recommendation. Design Locking devices Materials selection 1144 UNS G11440 Mixed-mode fracture ( Ref 1 ). A design deficiency involving improper materials selection was revealed through the analysis of a failed tapered-ring sprocket locking device...
Abstract
A failed tapered-ring sprocket locking device consisted of an assembly of four tapered rings that are retained by a series of cap screws. The middle wedge-shaped rings were pulled closer as the screws were tightened forcing the split inner ring to clamp tightly onto the shaft. One of the wedge-shaped middle rings fractured prior to having been fully torqued, preventing the sprocket from being locked to the shaft. “Woody” fracture features, as a result of decohesion between a high volume fractions of manganese sulfide stringers and the matrix, was revealed during examination. The material was revealed by chemical analysis to be resulfurized grade of carbon steel (SAE type 1144, UNS G11440) which has enhanced longitudinal tensile properties but low transverse properties. It was observed that when the fastening screws were torqued, a significant hoop stress was placed on the middle rings and it caused the failure at the large inclusion present at the minimum section thickness zone of the middle ring. It was concluded that since the material contained a high volume fraction of these inclusions, the material choice was not appropriate for this application. A nonresulfurized grade of low-alloy steel was suggested as recommendation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001686
EISBN: 978-1-62708-220-4
... transfer fluid. Design conditions are based on annular fluid flow to cool the coil wall. NDE, metallographic and fractographic examinations were performed. Numerous, circumferentially oriented, OD initiating cracks were found near the crown for two coils near the non-fired end of the vaporizer...
Abstract
A root cause failure analysis was performed on a vaporizer coil removed from a horizontal forced circulation vaporizer. The carbon steel coil was wound in a right-hand helix with a coil centerline diameter of about 2 m. The vaporizer was gas fired and used Dowtherm A as the heat transfer fluid. Design conditions are based on annular fluid flow to cool the coil wall. NDE, metallographic and fractographic examinations were performed. Numerous, circumferentially oriented, OD initiating cracks were found near the crown for two coils near the non-fired end of the vaporizer. The cracking was confined to the inner diameter of the vaporizer coil at positions from 4:00 to 7:00. The cracking was characterized as transgranular and the fracture surface had beach marks. The failure mechanism was thermal fatigue. The heat transfer calculation predicted that dryout of the coil would occur for coils at the non-fired end of the vaporizer during low flow transients. Dryout results in rapid increase in the tube wall temperature. Thermal cycling of the coil is completed by liquid quenching resulting from resumption of normal flow rates and the return to annular flow. The probable root cause of failure was low flow transient operation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003519
EISBN: 978-1-62708-180-1
... by the rigorous and detailed failure investigation of the capsule from the Apollo 1 fire. A second capsule, the next in line, was also sacrificed to better understand the failure and to determine the root cause. During the failure investigation, many other design and manufacturing flaws were discovered...
Abstract
This article reviews the most common reasons for failures and the purpose of a failure investigation. It discusses the nine steps for the organization of a good failure investigation. The three basic tools that are helpful in any failure investigation, namely, a fault tree, a failure mode assessment chart, and a technical plan for resolution chart, are reviewed. The article briefly describes failure investigation pitfalls and concludes with information on the other common tools used for failure investigation and root cause determination.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006755
EISBN: 978-1-62708-295-2
..., the next in line, was sacrificed during the investigation to better understand the failure and to determine the root cause. During the failure investigation, many other design and manufacturing flaws were discovered. These discoveries led to the implementation of many improvements as the Apollo program...
Abstract
This article discusses the organization required at the outset of a failure investigation and provides a methodology with some organizational tools. It focuses on the use of problem-solving tools such as a fault tree analysis combined with critical thinking. The discussion covers nine steps to organize a good failure investigation. They are as follows: understand and negotiate goals of the investigation, obtain a clear understanding of the failure, identify all possible root causes, objectively evaluate the likelihood of each root cause, converge on the most likely root cause(s), objectively and clearly identify all possible corrective actions, objectively evaluate each corrective action, select optimal corrective action(s), and evaluate effectiveness of selected corrective action(s). Common problems detrimental to a failure investigation are also covered.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001588
EISBN: 978-1-62708-221-1
... as to the circumstances, causes, and origins of this failure. FaAA evaluated relevant documentation and all physical evidence. Witnesses, staff, and consultants were interviewed regarding the design and manufacturing of the truss, as well as operation, controls, and maintenance. In order to reconstruct the collapse...
Abstract
On 23 Dec 1997, a portion of the main ore conveyor at a large mine collapsed onto a highway and shut down mine operations. The conveyor structure that collapsed was supported by a steel truss spanning 185 ft. Truss failure occurred just as the conveyor transport rate was increased to 8,260 tph. Under this total loading, which was only slightly above the regular operating condition, a poorly designed and fabricated transition joint in the west lower chord failed, thereby overloading other key structural members and causing the entire truss to collapse. Another contributing cause of the collapse was the transition joint welds, where the fracture originated. They were made with undersized fillet welds, 20% smaller than specified on the original fabrication drawing. Because of the poorly designed joint detail and the deficient welds, both of which concentrated stress and strain in the low ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0090276
EISBN: 978-1-62708-230-3
... through proper design and analysis. The case study, as documented in Ref 1 , is summarized here on the use of FEA in the original design of the dryers and in a failure analysis investigation to understand a cracking problem that developed. The typical components of a Yankee dryer consist of a cast...
Abstract
Cracking was found in the heads on large Yankee dryers, large, cylindrical, rotating, pressurized, high-temperature, cast iron pressure vessels (ASME Boiler and Pressure Vessel Code Section VIII, Rules for Construction of Pressure Vessels), used to remove moisture from sheets of tissue paper during manufacturing. The typical components consist of a cast iron shell, two cast iron concave heads, and a large cast iron internal center stay attached to journals. The heads are attached to the shell and center stay with high-strength bolts. FEA and metallurgical investigation supported the conclusion that the cracking was caused by an unexpected type of load placed on the machine, namely corrosion product buildup at the head/shell interface causing the joint to displace open. It was also found that compressive bolting loads could slightly open the head/shell interface at the periphery. Recommendations included design changes in the head/shell joint, and detailed preventive maintenance inspection procedures were also suggested.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003518
EISBN: 978-1-62708-180-1
..., including those that come from a deficient design, poor material, or mistakes in manufacturing. Whether those “defects” exist in a given component that is being subjected to the failure analysis process can often only be determined by someone with a materials background. The reasons for this are related...
Abstract
Failure analysis is a process that is performed to determine the causes or factors that have led to an undesired loss of functionality. This article describes some of the factors and conditions that might be considered when approaching a failure analysis problem. It focuses on the key principles, objectives, practices, and procedures of failure analysis. The article provides guidelines on the preparation of a protocol for a failure analysis. It also demonstrates the proper approaches to failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006754
EISBN: 978-1-62708-295-2
... that many people define the causes of failure in a rather binary manner: was the part defective or was it abused? Obviously, there are many types of defects, including those that come from a deficient design, poor material, or mistakes in manufacturing. Whether those “defects” exist in a given component...
Abstract
Failure analysis is a process that is performed in order to determine the causes or factors that have led to an undesired loss of functionality. This article is intended to demonstrate proper approaches to failure analysis work. The goal of the proper approach is to allow the most useful and relevant information to be obtained. The discussion covers the principles and approaches in failure analysis work, objectives and scopes of failure analysis, the planning stages for failure analysis, the preparation of a protocol for a failure analysis, practices used by failure analysts, and procedures of failure analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001584
EISBN: 978-1-62708-236-5
... Abstract On 13 Dec 1994, two massive detonations leveled portions of an ammonium nitrate plant near Sioux City, IA. The primary explosion allegedly occurred in defectively-designed titanium sparger piping inside the neutralizer vessel. Investigation however, revealed the explosion occurred...
Abstract
On 13 Dec 1994, two massive detonations leveled portions of an ammonium nitrate plant near Sioux City, IA. The primary explosion allegedly occurred in defectively-designed titanium sparger piping inside the neutralizer vessel. Investigation however, revealed the explosion occurred because of unsafe plant operations and poor maintenance procedures. Specifically, the ammonium nitrate within the 18,000 gal capacity neutralizer vessel had become contaminated and made highly acidic. The operators then injected superheated steam directly into the ammonium nitrate in the neutralizer vessel.