1-20 of 168 Search Results for

deformation flow behavior

Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006930
EISBN: 978-1-62708-395-9
... Abstract Rheology is defined as the study of the flow and deformation of matter. This article begins with an examination of flow behavior. It describes the geometries and methods employed for rheological testing of polymers in their molten state. It also discusses materials...
Image
Published: 15 May 2022
Fig. 2 Illustration of deformation behavior. (a) Spring. (b) Rotational solid torsion bar. (c) Tensile solid specimen. Flow, Deformation, Solid behavior, Elastic nature: F = F(x); F ≠ F(v) ; F -force; x , Displacement; v, velocity; θ, torque; Θ, angular displacement More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
..., it is necessary to deform the material at the right temperature, which is a fundamental characteristic in some superplastic behavior models, such as the one established by Ashby and Verrall [ 6 ]. Their model proposes a theory (Grain Boundary Sliding, Diffusion-Accommodated Flow Rate Controlling) to describe...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006944
EISBN: 978-1-62708-395-9
... Abstract The discussion on the fracture of solid materials, both metals and polymers, customarily begins with a presentation of the stress-strain behavior and of how various conditions such as temperature and strain-rate affect the mechanisms of deformation and fracture. This article describes...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
... stress state during the process provides a systematic approach for simultaneous modeling of billet deformation behavior and die stress and strain distribution during the forming process. From the point of view of metal-forming process, the flow behavior of billet material, which mainly depends upon...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
.... The crazes form as thin sheets that are approximately 0.1 to 10 μm (4 to 400 μin.) thick and spread as a planar zone. Within the craze, the density is approximately 50% of the original density. The creep, stress relaxation, and yield behavior for crazes is quite different than that for shear flow deformation...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... microscopy replica Ductile and Brittle Behavior Perhaps most importantly, the question of whether a fracture is ductile or brittle is almost always addressed in a failure analysis. Ductile and brittle are terms often used to describe the amount of macroscale plastic deformation that precedes...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
...—with ductile behavior and to associate no dislocation motion (i.e., no plastic deformation) with brittle cleavage behavior. The problem, of course, is one of scale. If there is no macro- or microscale evidence of deformation, it is tempting to assume brittle behavior. However, considerable evidence suggests...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... is required to conclude that plastic flow has preceded fracture. It is tempting to associate slip deformation—that is, the glide of dislocations—with ductile behavior and to associate no dislocation motion (i.e., no plastic deformation) with brittle cleavage behavior. The problem is one of scale...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
... to such an extent that large-strain behavior can be probed by very sensitive techniques. This is done by the superposition of small stresses or strains onto large stresses. These techniques depict the erasing of aging that follows large deformations. A group of researchers examined the behavior of PMMA using...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001312
EISBN: 978-1-62708-215-0
... as from an undeformed region of the failed component. The results of these tensile tests, along with the stress-strain behavior of an annealed copper specimen (with an average grain size of about 0.08 mm), are presented in Fig. 10 . Note that the deformation behavior exhibited by specimens taken from...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... to plastically deform, thereby increasing the contact area of mated surfaces; eventually, galling occurs. Another key material behavior during plastic deformation is the ease with which dislocations cross slip over more than one plane. In face-centered cubic materials, such as austenitic stainless steels...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... interlocked. Small fragments of material may be lost, but the resultant damage is more similar to scoring than to galling. For highly ductile materials, asperities tend to plastically deform, thereby increasing the contact area of mated surfaces; eventually, galling occurs. Another key material behavior...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... to illustrate the differences in deformation behavior between two different materials. As a practical matter, one would not substitute stainless steel for low-carbon steel to increase load capacity. One would use a heavier section, or perhaps, a higher-strength alloy. When loads increase gradually...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... to illustrate the differences in deformation behavior between two different materials. Practically, one would not substitute stainless steel for low-carbon steel to increase load capacity. One would use a heavier section or perhaps a higher-strength alloy. When loads increase gradually, distortion...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... conditions in a 3.5% chloride solution. TEM replica Fig. 12 Mud cracks on the fracture surface of a quenched and tempered 4340 steel exposed to a marine environment. TEM replica Ductile and Brittle Behavior Perhaps most importantly, the question of whether a fracture is ductile...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... Abstract This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals. It provides information on deformation, fracture, and crack propagation as well as the fractography involving the examination and interpretation of fracture...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
... the stresses may distort the structure of the material [ 3 ]. This localized distortion of the structure disturbs the magnetic behavior of the material, and consequently, the eddy current response varied from point to point in the presence of residual stresses. The eddy current response of the specimens...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006865
EISBN: 978-1-62708-395-9
... Abstract This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals, including plastic deformation. It provides overviews of crack propagation and fractography. The article presents the distinction between ductile and brittle...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... Abstract This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies...