Skip Nav Destination
Close Modal
By
Sara Fernandez, María José Quintana, José Ovidio García, Luis Felipe Verdeja, Roberto González ...
Search Results for
decohesions
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 61 Search Results for
decohesions
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 37 Decohesion at the particle-matrix interface on grain boundaries of 316 stainless steel that failed by creep
More
Image
Published: 15 January 2021
Fig. 37 Decohesion at the particle-matrix interface on grain boundaries of 316 stainless steel that failed by creep
More
Image
in Superplastic HSLA Steels: Microstructure and Failure
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 11 SEM micrograph of the steel tested at 800 °C showing a w-shaped decohesion
More
Image
in Failure Analysis of an Ammonia Refrigerant Condenser Tube
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 11 Decohesion of inclusion/matrix interface
More
Image
in Superplastic HSLA Steels: Microstructure and Failure
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 8 Micrograph of a specimen superplastically deformed at 800 °C at a zone close to rupture (15 mm away from it). W-shaped decohesion between ferrite–ferrite–pearlite ( w ), r–r-shaped decohesion between ferrite and pearlite ( rr ), ferrite–pearlite decohesion ( f ), and ferrite–ferrite ( r
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001380
EISBN: 978-1-62708-215-0
... crack origins which assumed a “thumbnail” shape and displayed surface morphologies which resulted from intergranular decohesion. Many of the crack sites initiated from corrosion pits. Energy dispersive spectroscope performed on areas within the crack initiation site showed the presence of chlorides...
Abstract
One of the two AISI 4340 steel pitch horn bolts from the main rotor hub assembly failed while in service. Optical microscope revealed evidence of corrosion pitting in regions adjacent to the fracture. Fractographic examination utilizing a scanning electron microscope revealed multiple crack origins which assumed a “thumbnail” shape and displayed surface morphologies which resulted from intergranular decohesion. Many of the crack sites initiated from corrosion pits. Energy dispersive spectroscope performed on areas within the crack initiation site showed the presence of chlorides. The failure was attributed to stress-corrosion cracking. Short- and long-term recommendations to prevent future failures are given.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001383
EISBN: 978-1-62708-215-0
... either a fatigue mechanism or ductile overload failure. SEM analysis revealed that the mode of fracture was intergranular decohesion, which indicates an environmental influence in the fracture mechanism. The primary fracture initiated at a thread root and propagated by environmentally-assisted slow crack...
Abstract
Several case-hardened and zinc-plated carbon-manganese steel wheel studs fractured in a brittle manner after very limited service life. The fracture surfaces of both front and rear studs showed no sign of fatigue beach marks or deformation in the form of shear lips that would indicate either a fatigue mechanism or ductile overload failure. SEM analysis revealed that the mode of fracture was intergranular decohesion, which indicates an environmental influence in the fracture mechanism. The primary fracture initiated at a thread root and propagated by environmentally-assisted slow crack growth until final fracture. The natural stress concentration at the thread root, when tightened to the required clamp load concomitant with the presence of cracks in the carburized case, was sufficient to exceed the critical stress intensity for hydrogen-assisted stress cracking (HASC). The zinc plating exacerbated the situation by providing a strong local corrosion cell in the form of a sacrificial anode region adjacent to the cracked thread. The enhanced generation of hydrogen in a corrosive environment subsequently lead to HASC of the wheel studs.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
... Abstract This paper describes the superplastic characteristics of shipbuilding steel deformed at 800 °C and a strain rate less than 0.001/s. After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases...
Abstract
This paper describes the superplastic characteristics of shipbuilding steel deformed at 800 °C and a strain rate less than 0.001/s. After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it occurs in stage III creep behavior. The behavior is confirmed through the Ashby-Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
... Abstract Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented...
Abstract
Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented in the circumferential direction and penetrated nearly 2 mm into the pipe wall. The pipes were made of titanium-stabilized austenitic stainless steel X6CrNiMoTi17-12-2. Six hypotheses were considered during the investigation, which ultimately concluded that the failure was caused by liquation cracking due to overheating.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0089254
EISBN: 978-1-62708-225-9
... of the wedge-shaped middle rings fractured prior to having been fully torqued, preventing the sprocket from being locked to the shaft. “Woody” fracture features, as a result of decohesion between a high volume fractions of manganese sulfide stringers and the matrix, was revealed during examination...
Abstract
A failed tapered-ring sprocket locking device consisted of an assembly of four tapered rings that are retained by a series of cap screws. The middle wedge-shaped rings were pulled closer as the screws were tightened forcing the split inner ring to clamp tightly onto the shaft. One of the wedge-shaped middle rings fractured prior to having been fully torqued, preventing the sprocket from being locked to the shaft. “Woody” fracture features, as a result of decohesion between a high volume fractions of manganese sulfide stringers and the matrix, was revealed during examination. The material was revealed by chemical analysis to be resulfurized grade of carbon steel (SAE type 1144, UNS G11440) which has enhanced longitudinal tensile properties but low transverse properties. It was observed that when the fastening screws were torqued, a significant hoop stress was placed on the middle rings and it caused the failure at the large inclusion present at the minimum section thickness zone of the middle ring. It was concluded that since the material contained a high volume fraction of these inclusions, the material choice was not appropriate for this application. A nonresulfurized grade of low-alloy steel was suggested as recommendation.
Image
in Superplastic HSLA Steels: Microstructure and Failure
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 10 SEM micrograph of the steel tested at 800 °C showing a r–r-shaped decohesion
More
Image
in Superplastic HSLA Steels: Microstructure and Failure
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 12 SEM micrograph of the steel tested at 800 °C showing a ferrite–pearlite (ductile) decohesion
More
Image
in Failure Analysis of HAZ Cracking in Low C-CrMoV Steel Weldment
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 10 Optical micrographs showing typical lath martensitic structure with grain boundary decohesion at prior austenite grain boundaries (magnification 1000×)
More
Image
in Failure Analysis of a Space Shuttle Solid Rocket Booster Auxiliary Power Unit (APU) Fuel Isolation Valve
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 4 SEM micrographs of an AM-355 poppet valve sealing surface. (a) A dislodged grain. 570×. (b) Sensitized grain boundaries result in grain boundary decohesion. 1140×
More
Image
in Hot Cracking in Inductively Bent Austenitic Stainless Steel Pipes
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 4 Closer view of Fig. 3 . Gaping surface crack. Typical dimensions of this decohesion of material were 3 mm in circumferential direction and 2.5 mm crack depth
More
Image
in Microstructural Features of Prematurely Failed Hot-Strip Mill Work Rolls: Some Studies in Spalling Propensity
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 6 SEM fractographs of roll sample HSM #9 showing (a) brittle features and small ductile zone as well as decohesion near graphite nodule and (b) essentially brittle area exhibiting intergranular cracking and cleavage steps; magnification 1000×
More
Image
in Failure Analysis of HAZ Cracking in Low C-CrMoV Steel Weldment
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 9 Optical micrographs of capping face of cracked specimen showing ( a ) weld zone, ( b ) HAZ, ( c ) base metal, ( d ) CGHAZ and ( e ) intergranular cracks in CGHAZ and ( f ) intergranular cracks and grain boundary decohesion in CGHAZ (magnification 200×)
More
Image
Published: 15 January 2021
Fig. 34 Microstructure and fracture appearance of type 316 stainless steel tested in creep to fracture at 770 °C (1420 °F) using a 62× MPa (8.95 ksi) load. Time to rupture: 808 h. (a) Optical micrograph showing crack nucleation and growth by decohesion along the carbide/matrix interfaces
More
Image
in Overload Failure of a Bronze Worm Gear
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 1 Overload failure of a bronze worm gear. (a) An opened crack is shown with a repair weld, a remaining casting flaw, and cracking in the base metal. (b) Electron image of decohesive rupture in the fine-grain weld metal. Scanning electron micrograph. 119×. (c) Morphology in the large-grain
More
Image
Published: 01 January 2002
Fig. 6 Overload failure of a bronze worm gear ( example 4 ). (a) An opened crack is shown with a repair weld, a remaining casting flaw, and cracking in the base metal. (b) Electron image of decohesive rupture in the fine-grain weld metal. Scanning electron micrograph. 119×. (c) Morphology
More
1