Skip Nav Destination
Close Modal
By
Ashok K. Koul, Raymond V. Dainty
By
Daniel J. Benac
By
Daniel J. Benac
By
Harry R. Millwater, Jr., Paul H. Wirsching
By
Peter F. Ellis, II
By
Pierre Dupont
By
K.C. Tripathi
By
Richard H. McSwain
By
James J. Scutti, William J. McBrine
Search Results for
damage tolerance analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 121
Search Results for damage tolerance analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Probabilistic Damage Tolerance Analysis of Gas Turbine Rotors
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0090030
EISBN: 978-1-62708-217-4
... to address the anomalies, with the objective of enhancing rotor life management practices. The ongoing work involves the use of fracture mechanics and software (called DARWIN.) optimized for damage tolerant design and analysis of metallic structural components. Compressors Damage tolerance analysis...
Abstract
A DC-10 in transit from Denver to Chicago experienced failure of the center engine. The titanium compressor disk burst and severed the hydraulics of the plane. Investigation supports the conclusion that the cause of the disk rupture was the presence of a large fatigue crack near the bore emanating from a hard alpha (HA) defect. Such defects can result from occasional upsets during the vacuum melting of titanium. These nitrogen-rich alpha titanium anomalies are brittle and often have associated microcracks and microvoids. A probabilistic damage tolerance approach was recommended to address the anomalies, with the objective of enhancing rotor life management practices. The ongoing work involves the use of fracture mechanics and software (called DARWIN.) optimized for damage tolerant design and analysis of metallic structural components.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
... , 1996 9. Cameron D.W. and Hoeppner D.W. , Fatigue Properties in Engineering , Fatigue and Fracture , Vol 19 , ASM Handbook , ASM International , 1996 , p 15 – 26 10. Broeck D. , Concepts of Fracture Control and Damage Tolerance Analysis , Fatigue and Fracture...
Abstract
This article provides information on life assessment strategies and conceptually illustrates the interplay of nondestructive evaluation (NDE) and fracture mechanics in the damage tolerant approach. It presents information on probability of detection (POD) and probability of false alarm (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
.... Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods. damage tolerance design analysis fatigue damage mitigation fatigue life assessment fracture mechanics pressure vessels welds FATIGUE FAILURE of metal...
Abstract
This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview of high-cycle welded fatigue methods, cycle-counting techniques, and a discussion on ratcheting are also offered. A historical synopsis of fatigue technology advancements and commentary on component design and fabrication strategies to mitigate fatigue damage and improve damage tolerance are provided. Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods.
Book Chapter
Fatigue Fracture of Aircraft Engine Compressor Disks
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001081
EISBN: 978-1-62708-214-3
... under estimated, which led to low-cycle fatigue cracking earlier than expected. Fracture mechanics analysis of the disks was carried out to assess their damage tolerance and to predict safe inspection intervals. Fatigue life Fracture mechanics Gas turbine engines Jet planes Low-cycle fatigue...
Abstract
Several compressor disks in military fighter and trainer aircraft gas turbine engines cracked prematurely in the bolt hole regions. The disks were made of precipitation-hardened AM355 martensitic stainless steel. Experimental and analytical work was performed on specimens from the fifth-stage compressor disk (judged to be the most crack-prone disk in the compressor) to determine the cause of the failures. Failure was attributed to high-strain low-cycle fatigue during service. It was also determined that the cyclic engine usage assumed in the original life calculations had been under estimated, which led to low-cycle fatigue cracking earlier than expected. Fracture mechanics analysis of the disks was carried out to assess their damage tolerance and to predict safe inspection intervals.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... loading spectrum for fatigue and damage-tolerance analysis and test. This has led to much effort being expended to quantitatively define how the variation of key spectrum parameters affect crack growth life ( Ref 18 ). The key question remains how closely a design spectrum must simulate real life usage...
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Book Chapter
Failure Prevention through Life Assessment of Structural Components and Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... of stiffeners on stress distribution Establishment of aircraft structural integrity program in 1958 F-111 aircraft 94 wing pivot fitting ( Ref 11 ) 1969 Fatigue failure due to material defect in high-strength steel Improved inspection techniques Change from fatigue “safe-life” to damage-tolerant design...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Book Chapter
Failure Analysis and Life Assessment of Structural Components and Equipment
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... “safe-life” to damage-tolerant design philosophy Development of materials with improved toughness Seam-welded high-energy piping failures ( Ref 12 ) 1986–2000 Cavitation and creep voids in welds resulting in catastrophic high-energy rupture Development of elevated-temperature life assessment...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Book Chapter
Corrosion-Fatigue Cracking in an AMS 6415 Steel Aircraft Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046870
EISBN: 978-1-62708-217-4
..., probably water in the hydraulic oil, had been present in service. No material or fabrication defects were detected, nor was there any other service damage that could be related to the failure. Chemical analysis showed that the steel conformed in composition to the requirements of the specified material...
Abstract
A hollow, splined alloy steel aircraft shaft (machined from an AMS 6415 steel forging – approximately the same composition as 4340 steel – then quenched and tempered to a hardness of 44.5 to 49 HRC) cracked in service after more than 10,000 h of flight time. The inner surface of the hollow shaft was exposed to hydraulic oil at temperatures of 0 to 80 deg C (30 to 180 deg F). Analysis (visual inspection, 15-30x low magnification examination, 4x light fractograph, chemical analysis, hardness testing) supported the conclusions that the shaft cracked in a region subjected to severe static radial, cyclic torsional, and cyclic bending loads. Cracking originated at corrosion pits on the smoothly finished surface and propagated as multiple small corrosion-fatigue cracks from separate nuclei. The originally noncorrosive environment (hydraulic oil) became corrosive in service because of the introduction of water into the oil. Recommendations included taking additional precautions in operation and maintenance to prevent the use of oil containing any water through filling spouts or air vents. Also, polishing to remove pitting corrosion (but staying within specified dimensional tolerances) was recommended as a standard maintenance procedure for shafts with long service lives.
Book Chapter
Cavitation Erosion of a Water-Cooled Aluminum Alloy 6061-T6 Combustion Chamber
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046418
EISBN: 978-1-62708-234-1
... Abstract Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis...
Abstract
Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis (visual inspection, 100x/500x/800x micrographic examination, spectrographic analysis, and hardness testing) supported the conclusions that, as a result of improper heat treatment, the combustion-chamber material was too soft for successful use in this application. Misalignment of the combustion chamber and one or both of the mating parts resulted in eccentric rotation and the excessive vibration that caused malfunction of the assembly. Irregularities in the housing around the combustion chamber and temperature variation relating to the combustion pattern in the chamber were considered to be possible contributing factors to localization of the cavitation erosion. Recommendations included adopting inspection procedures to ensure that the specified properties of aluminum alloy 6061-T6 were obtained and that the combustion chamber and adjacent components were aligned within specified tolerances. In a similar situation, consideration should also be given to raising the pressure in the coolant in order to suppress the formation of cavitation bubbles.
Book Chapter
Analysis Methods for Probabilistic Life Assessment
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
... of fracture (PROF) computer code to quantify the probability of failure of aircraft structures with consideration of inspection, structural replacement, and repair ( Ref 24 ). The commercial aircraft gas turbine engine industry is adopting a probabilistically-based damage tolerance analysis method...
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
Book Chapter
Fatigue Failure of Excavator Tie-Bars Due to Defective Welds
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001460
EISBN: 978-1-62708-221-1
... Abstract Tie bars of a dragline excavator each consisted of a rectangular section steel bar to which eye-pieces, to facilitate anchorage, were attached by butt-welds. Failure of one weld in each bar after seven years of service allowed the boom to fall and become extensively damaged...
Abstract
Tie bars of a dragline excavator each consisted of a rectangular section steel bar to which eye-pieces, to facilitate anchorage, were attached by butt-welds. Failure of one weld in each bar after seven years of service allowed the boom to fall and become extensively damaged. The appearance of the fracture faces of the two welds showed partial-penetration joints. Failure in each bar had taken place through the weld metal. The presence of built-in cracks introduced zones of stress concentration and the fluctuating loads to which the ties were subjected in service served to initiate fatigue cracks. While the partial-penetration type of weld may be tolerated in a component subjected to bending stresses it is undesirable in one that is required to withstand fluctuating tensile stresses.
Book Chapter
Repeated Failure of Rubber Slurry Pump Impellers and Liners in a Flue Gas Desulfurization Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001087
EISBN: 978-1-62708-214-3
... that these rotors exhibited a progression of the damage shown in Fig. 4 . Chemical Analysis/Identification The composition of the rubbers was investigated using attenuation total reflectance infrared spectroscopy (ATR-IR). ATR-IR confirmed that the polymer was composed of isoprene blocks, consistent...
Abstract
The repeated failure of rubber-covered rotors and volute liners in a flue gas desulfurization system after conversion from lime slurry reagent to limestone slurry reagent was investigated. The pump was a horizontal 50 x 65 mm (2 x 2.5 in.) Galiger pump with a split cast iron case and open rotor (impeller). Both the case and the ductile iron rotor core were covered by natural rubber. Analyses conducted included surface examination of wear patterns, chemical analysis of materials, measurement of mechanical properties, and in-place flow tests. It was determined that the proximate cause of failure was cavitation and vortexing between the rotor and the lining. The root cause of the failure was the conversion from lime to limestone slurry without appropriate modification of the pump. Conversion to the limestone slurry resulted in fluid dynamics outside the operational limits of the pump. The recommended remedial action was replacement with a pump appropriately sized for the desired pressures and flow rates for limestone slurry.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003513
EISBN: 978-1-62708-180-1
... ). In addition, the FAD is the recommended approach for the damage-tolerance analysis of ship structures ( Ref 8 ). The background and derivations of the FAD were the subject of a theme issue of The International Journal of Pressure Vessels and Piping ( Ref 9 ). Applications of, and experience with, the FAD...
Abstract
Optimized modeling of fracture-critical structural components and connections requires the application of elastic-plastic fracture mechanics. Such applications, however, can require sophisticated analytical techniques such as crack tip opening displacement (CTOD), failure assessment diagram (FAD), and deformation plasticity failure assessment diagram (DPFAD). This article presents the origin and description of FAD and addresses R6 FAD using J-integral. It details the fracture criteria of BS 7910. The factors to be considered during the use of FAD and the applications of FAD are also reviewed.
Book Chapter
Failures of Rolling-Element Bearings and Their Prevention
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... Abstract This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface...
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Book Chapter
SCC of 300M Steel Jackscrew Drive Pins
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048665
EISBN: 978-1-62708-217-4
... to the plane. The primary service stress on the pins was shear. The pins had nominal dimensions of 41-mm (1.6-in.) outside diameter, 25-mm (1-in.) inside diameter, and 178-mm (7-in.) length, and they had a smooth push fit with a hole tolerance of +0.04 to +0.1 mm (+0.0015 to +0.0040 in.). They were shot peened...
Abstract
The jackscrew drive pins on a landing-gear bogie failed when the other bogie on the same side of the airplane was kneeled for tire change. The pins, made of 300M steel, were shot peened and chromium plated on the outside surface and were cadmium plated and painted with polyurethane on the inside surface. The top of the jackscrew was 6150 steel. Both ends of the pins were revealed to be dented where the jackscrew had pressed into them and were observed to have been resulted due to overdriving the jackscrew at the end of an unkneeling cycle. These dented areas were found to be heavily corroded with chromium plating missing. A heavily corroded intergranular fracture mode was revealed by chromium-carbon replicas of the areas of fracture origin. Deep corrosion pits adjacent to the fracture origins and directly beneath cracks in the chromium plate were revealed by metallographic examination. It was concluded that stress-corrosion cracks grew out from the rust pits. The pin material was changed from 300M steel to PH 13-8 Mo stainless steel, which is highly resistant to rusting and SCC and the jacking control system was modified to prevent overdriving.
Book Chapter
Compression Fracture of a Graphite-Epoxy Test Structure Due to a Buckling Instability
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048498
EISBN: 978-1-62708-234-1
... localized buckling of the skin panel was evident between each of these through-thickness fractures. To define areas of nonvisible damage, that is, delamination, a nondestructive evaluation was performed with TTU. This analysis revealed a roughly 10-cm (4-in.) wide band of delamination between the areas...
Abstract
A graphite-epoxy tapered-box structure, which consisted of two honeycomb skin panels fastened to a spanwise spar with intermediate chordwise ribs, fractured during testing. Hinge-line deflection of the front spar was revealed. Through-thickness cracks in the forward and trailing edges of the compression-loading skin panel were revealed by nondestructive visual examination. A band of de-lamination between the areas of through-thickness skin fracture at the front and rear spar was revealed. A map of the local directions of crack propagation over the fracture surface was generated by the orientation of river patterns and resin microflow during microscopic examination of sectioned samples of the panel. It was discovered that crack initiation occurred at the periphery of a fastener hole located at the front spar. Propagation occurred chordwise across the compression-loaded skin panel. As a corrective measure, the fastener spacing was reduced to prevent the buckling mode that precipitated fracture.
Book Chapter
Failure Analysis of Computer Data Storage Disc Drive Systems
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001516
EISBN: 978-1-62708-234-1
... cutting sites for damaging the coating. Analysis of the deposit in Figure 5 shows it to be Co-Ni magnetic coating along with contaminants, such as Al, Si S, Cl and K. Presence of Ca and Ti is due to the head material calcium titanate and that of Mn and Fe due to the pole-piece material manganese ferrite...
Abstract
This paper deals with disk drive failures that occur in the interface area between the head and disk. The failures often lead to the loss of stored data and are characterized by circumferential microscratches that are usually visible to the unaided eye. The recording media in disk drives consists of a metal, glass, ceramic, or plastic substrate coated with a magnetic material. Data errors are classified as ‘soft’ or ‘hard’ depending on their correctability. Examination has shown that hard errors are the result of an abrasive wear process that begins with contact between head and disk asperities. The contact generates debris that, as it accumulates, increases contact pressure between the read-write head and the surface of the disk. Under sufficient pressure, the magnetic coating material begins wearing away, resulting in data loss.
Book Chapter
Processing-Induced Fatigue Fracture of a Helicopter Tail Rotor Blade
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001298
EISBN: 978-1-62708-215-0
... spar A single corrosion pit, 0.38 mm (0.015 in.) deep, led to a fatigue failure of the spar The failure initiated on the pylon side of the blade. Dimensional analysis of the spar near the failure revealed measurements within engineering drawing tolerances. Though corrosion pitting was present...
Abstract
A helicopter tail rotor blade spar failed in fatigue, allowing the outer section of the blade to separate in flight. The 7075-T7351 aluminum alloy blade had fiberglass pockets. The blade spar was a hollow “D” shape, and corrosion pits were present on the inner surface of the hollow spar A single corrosion pit, 0.38 mm (0.015 in.) deep, led to a fatigue failure of the spar The failure initiated on the pylon side of the blade. Dimensional analysis of the spar near the failure revealed measurements within engineering drawing tolerances. Though corrosion pitting was present, there was an absence of significant amounts of corrosion product and all of the pits were filled with corrosion-preventative primer. This indicated that the pitting occurred during spar manufacture, prior to the application of the primer The pitting resulted from multiple nickel plating and defective plating removal by acid etching. Post-plating baking operations subsequently reduced the fatigue strength of the spar.
Book Chapter
Fatigue Failure of a Diesel Engine Crankshaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001418
EISBN: 978-1-62708-231-0
... Abstract The crankshaft of a six cylinder, 225-hp diesel engine driving a small locomotive was examined. About nine months after installation a fall in oil pressure was traced to damage to No. 5 crank pin bearing. A small lip present on one side of the discontinuity apparently served to scrape...
Abstract
The crankshaft of a six cylinder, 225-hp diesel engine driving a small locomotive was examined. About nine months after installation a fall in oil pressure was traced to damage to No. 5 crank pin bearing. A small lip present on one side of the discontinuity apparently served to scrape the bearing material. The defect was stoned smooth, a new bearing fitted, and the engine returned to service. The engine performed satisfactorily for a further twelve months until fracture of the crankshaft through the No. 5 crank pin supervened. The fracture revealed a complex torsional fatigue failure. Microscopic examination revealed that the pin had been hard chromium plated and that the plating followed the curved edge of the outer extremity of the defect. This crank pin contained an inherent defect in the form of a slag inclusion or crack situated at the surface. That the crack only showed itself after a period of service suggests that initially it may have been slightly below the surface of the machined pin and some slight extension outwards took place in service.
Book Chapter
Introduction to Failure Analysis and Prevention
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
..., be they loss of production, property damage, injury, or fatality. The discipline has also been used effectively as a teaching tool for new or less experienced engineers. The importance and value of failure analysis to safety, reliability, performance, and economy are well documented. For example...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
1