Skip Nav Destination
Close Modal
Search Results for
cyclic hoop stress
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 52 Search Results for
cyclic hoop stress
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001822
EISBN: 978-1-62708-241-9
... of fatigue striations all supported transit fatigue as the damage mechanism. spiral welded pipe fracture transit fatigue HSLA steel longitudinal crack magnetic particle testing cyclic hoop stress API 5L-X65 (high-strength low-alloy plate steel) Introduction A newly installed pipeline...
Abstract
A newly installed pipeline leaked during cleaning prior to hydrotest at a pressure of approximately 400 psig. The intended hydrotest pressure was 750 psig. The pipeline was constructed from spiral-welded API 5L-X65 HSLA steel and was intended for seawater injection. Analysis included nondestructive testing, metallography, and scanning electron microscopy. Based on the results, the failure was attributed to transit fatigue, caused during highway transportation. Cracks along the toes of the weld from both the outside and inside surfaces, the transgranular nature of cracking, and the presence of fatigue striations all supported transit fatigue as the damage mechanism.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090908
EISBN: 978-1-62708-221-1
... Abstract An irrigation pipe made of medium-density PE failed during service. This pipe was subjected to severe cyclic-bending strain of the order of 6% while under tensile stress of approximately 6.9 MPa (1000 psi) and a hoop stress of approximately 6.2 MPa (900 psi), far more stringent...
Abstract
An irrigation pipe made of medium-density PE failed during service. This pipe was subjected to severe cyclic-bending strain of the order of 6% while under tensile stress of approximately 6.9 MPa (1000 psi) and a hoop stress of approximately 6.2 MPa (900 psi), far more stringent conditions than those encountered in most applications of PE pipes. Visual inspection and reflected-light optical micrographs were used to plot bandwidth as a function of crack length. The conclusion was that, contrary to the dominant belief that pipe failure initiates from surface defects, a critical size flaw within the pipe wall can also initiate failure as it did in this case. Recommendations included that similarity criteria should be established between the fracture behavior of a component in service and that observed in the laboratory.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001724
EISBN: 978-1-62708-234-1
... “hoop” load when in operation, arising from a combination of stresses which will be discussed later, so it is very desirable that the rather soft and yielding austenitic steel be hardened and strengthened — and this can be done only by cold working (actually, warm working). For such a large ring...
Abstract
Forged austenitic steel rings used on rotor shafts in two 100,000 kW generators burst from overstressing in a region of ventilation holes. A variety of causes contributed to the brittle fractures in the ductile austenitic alloy, including stress concentration by holes, work hardened metal in the bores, and a variable pattern of residual stress.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001137
EISBN: 978-1-62708-228-0
... questions were of particular concern: (i) whether there was any evidence of fatigue or whether the crack growth was purely of an SCC nature? (ii) if there was evidence of fatigue what was the cyclic stress amplitude? (iii) an estimate of the critical flaw size (from a fracture mechanics standpoint)? and (iv...
Abstract
Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed in service some years previously. The failed pressure vessel, with a diam of 2.5 m and several meters tall, had been made of 12 mm thick IZETT steel plate of the same type and heat treatment as used in the earlier fitness-for-purpose already measured. Examination of the fracture surfaces suggested, from fatigue striations manifested by SEM, that the vessel was subject to significant fatigue cracking, which was probably corrosion assisted. From COD measurements at the operating temperature of -130 deg C (-202 deg F), and a finite stress analysis, a fracture mechanics evaluation using BS PD6493 yielded realistic critical flaw sizes (in the range 51 to 150 mm). These sizes were consistent with the limited fracture surface observations and such flaws could well have been present in the vessel dome prior to catastrophic failure. For similar pressure vessels, an inspection program based on a leak-before-break philosophy was consequently regarded as acceptable.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001692
EISBN: 978-1-62708-229-7
... (rated output) and 1000 kW (peak design condition). The preload considered is the design value, together with a fatigue strength reduction factor (K f ) of four (4), in consideration of the stress concentration at the threads of the bolts. As designed, all cyclic load conditions fall within the “safe...
Abstract
Two blade-detachment failures in large (600 kW) wind turbine generators were investigated. In the first case, bolt failures were established as the initial failure event. A fatigue crack reached a critical length, fast fracture developed and was then arrested as the bolt unloaded. Crack growth resumed when loading increased with cracking or fracture of adjacent bolts. The problem was identified as one of insufficient preload on the bolts. In the second failure on a different unit, a retaining nut on a blade assembly split, allowing a roller bearing to slide off a shaft and a blade to separate at its attachment hub. The failure was observed to be by fatigue. It was determined that pieces of the outer retaining rib (or flange) on the bearing inner cage had fractured by fatigue and were trapped between the nut and the bearing, producing excessive cyclic loading on the nut by a wedging action as the blade pitch adjusted during a revolution. Fatigue of the rim occurred as a result of inadequate lubrication in the bearing, which led to load transfer across the rollers, onto the rim.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001305
EISBN: 978-1-62708-215-0
... The hardness of the wheel rim was 265 to 268 HB, which met the requirements for class A wheels and was consistent with the observed chemistry and microstructure. Discussion Cyclic tensile stresses induced in the wheel flange were high enough to cause fatigue initiation and progression. On subsequent...
Abstract
An ASTM A 504 carbon steel railway car wheel that was used on a train in a metropolitan railway system failed during service, causing derailment. The wheel was completely fractured from rim to hub. Macrofractography of the fracture surface showed road grime, indicating that the crack had existed for a considerable time prior to derailment and initiated in the flange. Failure propagated from the flange across the rim and down the plate to the bore of the hub. Two zones that exhibited definite signs of heating were observed. The fracture initiation site was typical of fatigue fracture. No defects were found that could have contributed to failure. The wheel conformed to the chemical, microstructural, and hardness requirements for class A wheels. Failure was attributed to repeated severe heating and cooling of the rim and flange due to brake locking or misapplication of the hand brake. It was recommended that the brake system on the car be examined and replaced if necessary.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001056
EISBN: 978-1-62708-214-3
... thickness. Nevertheless, such a thermal shock effect is of particular concern in a stationary regime, because stresses produced by this effect reinforce stresses resulting from fluctuations of stratified layers. These pseudoelastic stresses, which also included hoop stresses caused by pressure through...
Abstract
Type 347 stainless steel moderator circuit branch piping in a pressurized hot water reactor was experiencing frequent leakage. Investigation of the problem involved failure analysis of leaking pipe specimens, analytical stress analysis, and determination of “leak-before-break” conditions using fracture mechanics and thermal fatigue simulation tests. Failure analysis indicated that cracking had been initiated by thermal fatigue. Data from the analysis were used in making the leak-before-break predictions. It was determined that the cracks could grow to two-thirds of the circumferential length of the pipe without catastrophic failure. A thin stainless steel sleeve was inserted in the branch pipe to resolve the problem.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... in transparency Creep-rupture from constant load (creep) Odor development Chemical or environmental stress cracking (ESC) Loss of adhesion Loss of mechanical seal (stress-relaxation) Shrinkage/warpage Cracking from cyclic loading (fatigue) Once the type of failure needing to be assessed...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
..., and pressure-retaining equipment. Metal fatigue is characterized as a complicated metallurgical process that is cycle-dependent and in which failure of a component occurs due to repeated or cyclic loading, which creates cyclic stresses. Cyclic stresses can result from mechanical loading (applied loading...
Abstract
This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview of high-cycle welded fatigue methods, cycle-counting techniques, and a discussion on ratcheting are also offered. A historical synopsis of fatigue technology advancements and commentary on component design and fabrication strategies to mitigate fatigue damage and improve damage tolerance are provided. Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... important is the maximum principal stress that occurs in approximately the hoop direction. Therefore, only the hoop stress is considered in the analysis. Since most of the passageway cracks found in the casing were indeed along the radial-axial plane, the choice of the hoop stress seems appropriate...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001789
EISBN: 978-1-62708-241-9
... initiation concerns were ruled out since the union nuts experience minimal cyclic loading because of the fact that the systems maintain pressure at all times other than scheduled maintenance, which occurs approximately once every 18–24 months [ 5 ]. The lack of significant cyclic stress is substantiated...
Abstract
An air system on a marine platform unexpectedly shut down due to the failure of a union nut, which led to an investigation to quantify the material limitations of bronze alloys in corrosive marine environments. The study focused on two alloys: Al-Si bronze, as used in the failed component, and Ni-Al bronze, which has a history of success in naval applications. Material samples were examined using chemical analysis, SEM imaging, and corrosion testing. Investigators also analyzed precracked tension specimens, exposing them to different conditions to quantify stress intensity thresholds for environmentally assisted cracking. Al-Si bronze was found to be susceptible to subcritical intergranular cracking in air and seawater, whereas Ni-Al bronze was unaffected. Both materials, however, are susceptible to cracking in the presence of ammonia, although the subcritical crack growth rate is two to three times higher in Ni-Al bronze. Based on the results of this work, the likelihood of subcritical cracking under various conditions can be reasonably estimated, which, in the case at hand, proved to be quite high.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
... cycle fatigue associated with cyclic temperature changes from normal service. The design of the part and the material selection were significant contributing factors because of stresses induced during molding, physical aging of the amorphous polysulfone resin, and the substantial differential...
Abstract
A failure analysis was conducted on a flow-sensing device that had cracked while in service. The polysulfone sensor body cracked radially, adjacent to a molded-in steel insert. This article describes the investigative methods used to conduct the failure analysis. The techniques utilized included scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermomechanical analysis, and melt flow rate determination. It was the conclusion of the investigation that the part failed via brittle fracture, with evidence also indicating low cycle fatigue associated with cyclic temperature changes from normal service. The design of the part and the material selection were significant contributing factors because of stresses induced during molding, physical aging of the amorphous polysulfone resin, and the substantial differential in coefficients of thermal expansion between the polysulfone and the mating steel insert.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001526
EISBN: 978-1-62708-229-7
... SA-335, Grade P22. No evidence was found of a material discrepancy that would have caused or contributed to the cracking. The cracking in the west superheater outlet header was caused by thermal fatigue in conjunction with hoop stresses associated with the normal operation of the unit ( Fig. 4...
Abstract
In Nov. 1998, the west superheater outlet header at an electricity generating plant began to leak steam. Subsequent investigation revealed the presence of a crack that extended for 360 deg around the full circumference of the header and through the full cross-sectional thickness. The subsequent inspection of this header and the east superheater header revealed the presence of extremely severe ligament cracking. They operated at 2400 psi (16.5 MPa) and a temperature of 540deg C (1005 deg F). Both were fabricated from seamless pipe produced in accordance with ASME Specification SA-335, and the steel was Grade P22, a 2.25Cr-1Mo alloy steel. Visual and metallurgical evaluations showed the cracking in the west superheater outlet header was caused by thermal fatigue. Tube holes had served as a preferential site for thermal fatigue cracking.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001842
EISBN: 978-1-62708-241-9
... steel heat affected zone metallurgical notch ring test cyclic bending stress fatigue limit ASTM A106 (seamless carbon steel pipe) UNS K02501 Introduction The fractured part of concern is a long, slender roll that was located in the dryer section of a paper manufacturing machine. Paper...
Abstract
A felt guide roll fractured in-service on a paper manufacturing machine, damaging the belt as well as multiple dryer rolls, nearby felt guide rolls, and the frame of the machine. The investigation included visual and stereoscopic examination, chemical and microstructural analysis, microhardness and tensile testing, stress calculations, and vibration measurements. Based on the results, the roll fracture was attributed to high-cycle fatigue associated with a plug weld over one of the five threaded fasteners added to secure a balance weight inside the roll. The balance weight was installed to compensate for variations in wall thickness (i.e., weight distribution) of the pipe product used to make the roll. According to the investigation, resonance and vibration, which were initially considered, did not cause the failure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... diffusion In the most general case of out-of-phase TMF loading, the slip-band density would be modified to incorporate cyclic plasticity, the destructive interference of the oxidation damage mechanism, as well as the constructive interference of the hydrostatic stress, as follows: (Eq 24) i = K...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... thicknesses are based on the pressure in the line and on the allowable hoop stress levels. The allowable stress levels for gas pipelines vary from 40 to 72% of the specified minimum yield strength based on the population density in the area of the pipeline and are regulated by the U.S. Department...
Abstract
This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also reviewed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... ( Ref 3 ). The primary stresses in pipelines are quantified using Barlow’s formula ( Ref 4 ), which calculates the hoop stress in the pipe. Hoop stress is given by multiplying the pipe internal pressure by the pipe outer diameter and dividing that product by twice the pipe-wall thickness. The maximum...
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... corrosion) Experience cyclic loading in service (mechanical or thermal fatigue) May have been subject to improper processing on manufacture (shot peening, grinding, milling, etc.) May have been subject to inappropriate heat treatment (stress relief, induction hardening, service temperature, thermal...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... a broader engineering failure. Note that some non-fracture-failure scenarios may ultimately lead to fracture. Wear processes, for example, can ultimately lead to fracture by galling and/or fretting fatigue. Other examples include fatigue crack initiation at surface pits from corrosion, cyclic loading...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... crack initiation at surface pits from corrosion, cyclic loading in a corrosive environment ( stress-corrosion fatigue ) and elastic buckling. Elastic buckling may cause parts to contact, causing seizure of a rotating system, but it may also lead to plastic buckling and ultimately to fracture...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
1