Skip Nav Destination
Close Modal
Search Results for
crevice corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 124 Search Results for
crevice corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091336
EISBN: 978-1-62708-234-1
... of the assembly, a fabric bag containing palladium oxide was taped to the tube. The palladium served as a “getter.” Investigation (visual inspection and EDS analysis of corrosion debris) supported the conclusion that chlorides and palladium both contributed to corrosion in the crevice created by the tape...
Abstract
A type 304 austenitic stainless steel tube (0.008 max C, 18.00 to 20.00 Cr, 2.00 max Mn, 8.00 to 10.50 Ni) was found to be corroded. The tube was part of a piping system, not yet placed in service, that was exposed to an outdoor marine environment containing chlorides. As part of the assembly, a fabric bag containing palladium oxide was taped to the tube. The palladium served as a “getter.” Investigation (visual inspection and EDS analysis of corrosion debris) supported the conclusion that chlorides and palladium both contributed to corrosion in the crevice created by the tape on the tube, which was periodically exposed to water. Recommendations included taking steps to prevent water from entering and being trapped in this area of the assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047611
EISBN: 978-1-62708-220-4
... tubes expanded and welded into two type 304L stainless steel tube sheets. The tubes failed by crevice corrosion. The failed tubes were defective as-received, and the establishment of concentration cells within the longitudinal cracks in the seam welds led to ultimate corrosive penetration of the wall...
Abstract
Several tubes in a tube bundle in an evaporator used to concentrate an acid nitrate solution failed by leakage. The feed to the evaporator contained about 6% nitrate, and the discharge about 60% nitrate. The tube bundle was comprised of type 309S (Nb) stainless steel drawn-and-welded tubes expanded and welded into two type 304L stainless steel tube sheets. The tubes failed by crevice corrosion. The failed tubes were defective as-received, and the establishment of concentration cells within the longitudinal cracks in the seam welds led to ultimate corrosive penetration of the wall. There was no evidence of crevice corrosion or any localized penetration of tubes that had sound welds. The leaking type 309S (Nb) welded tubes should be replaced with seamless tubes of type 304L stainless steel to minimize the areas requiring welding and to provide maximum weldability for the tube-sheet joints.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048708
EISBN: 978-1-62708-229-7
... by crevice corrosion. The tubing in the cooler was replaced, and cooling-water supply was changed from river to city water, which contained no dirt to deposit on the tube surfaces. An alternate solution of installing replacement tubes in the vertical position to make deposition of solids from river water...
Abstract
The horizontal heat-exchanger tubes made of copper alloy C70600, in one of two hydraulic-oil coolers in an electric power plant, leaked after 18 months of service. River water was used as the coolant in the heat-exchanger tubes. Several nodules on the inner surface and holes through the tube wall, which appeared to have formed by pitting under the nodules, were revealed by visual examination. Steep sidewalls, which indicated a high rate of attack, were revealed by microscopic examination of a section through the pit which had penetrated the tube wall. The major constituent of reddish deposit on the inner surfaces of the tubes was revealed to be iron oxide and slight manganese dioxide. Effluent from steel mills upstream was indicated by the presence of these and other constituents to be the source of most of the solids found in the tubes. It was concluded that the tubing failed by crevice corrosion. The tubing in the cooler was replaced, and cooling-water supply was changed from river to city water, which contained no dirt to deposit on the tube surfaces. An alternate solution of installing replacement tubes in the vertical position to make deposition of solids from river water less likely was suggested.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001211
EISBN: 978-1-62708-235-8
... surface indicates the action of water with a high oxygen content. The oxygen in the return water must have originated from the ventilation of the open expansion vessel. Because of the corrosion-favoring effect of a crevice, water with a high oxygen-content that was perhaps still warm or even hot found...
Abstract
An elbow made from welded steel tube had become leaky along a well-defined line in the axial direction. The entire wall of the tube was corroded, and the longitudinally-welded seam stood out clearly as a result of particularly intensive corrosive attack. The appearance of the corroded surface indicates the action of water with a high oxygen content. The oxygen in the return water must have originated from the ventilation of the open expansion vessel. Because of the corrosion-favoring effect of a crevice, water with a high oxygen-content that was perhaps still warm or even hot found particularly favorable conditions for corrosion in the defective welded seam (crevice corrosion). The tube material itself is perfectly satisfactory and in no way responsible for the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001240
EISBN: 978-1-62708-234-1
... by erosion were noticeable. This was a typical case of crevice corrosion. The rolled joint evidently was not entirely tight, so that saturated steam condensate could penetrate into the gap. Heat exchangers Oil burners Pipe Fe-0.15C Pitting corrosion Erosion - corrosion Crevice corrosion...
Abstract
A heat exchanger made of a pipe in which oil was heated from the outside from approximately 90 deg C to 170 deg C, by superheated steam of about 8 to 10 atmospheres had developed a leak at the rolled joint of the pipe and pipe bottom. The pipes were supposed to be made from St 35.29 steel and annealed at the rolled joint to 100 mm length. The outer pipe surface was strongly pitted by corrosion all around the rolled joint. In the vicinity of the steam chamber the pipe wall had oxidized through from the exterior to the interior at one spot. Adjoining this spot, grooves caused by erosion were noticeable. This was a typical case of crevice corrosion. The rolled joint evidently was not entirely tight, so that saturated steam condensate could penetrate into the gap.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001068
EISBN: 978-1-62708-214-3
... type 304L stainless steel were removed from storage. Atmospheric corrosion on the outside of the tanks and pitting and crevice corrosion on the inside were visible. Metallographic examination revealed that the internal corrosion had been caused by crevices related to weld spatter and uneven weld...
Abstract
Four tanks made from type 304L stainless steel were removed from storage. Atmospheric corrosion on the outside of the tanks and pitting and crevice corrosion on the inside were visible. Metallographic examination revealed that the internal corrosion had been caused by crevices related to weld spatter and uneven weld deposit and by service water that had not been drained after hydrostatic testing. External corrosion was attributed to improper passivation. It was recommended that the surfaces be properly passivated and that, before storage, the interiors be rinsed with demineralized water and dried.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001334
EISBN: 978-1-62708-215-0
... surface examination and optical microscope metallography. It was determined that the tube failed from crevice corrosion under seawater deposits that had formed on the inner surface. Mechanical cleaning of the condenser tubes every 6 months and installation of intake screens of smaller mesh size were...
Abstract
Leaks developed at random locations in aluminum brass condenser tubes within the first year of operation of a steam condenser in a nuclear power plant. One failed tube underwent scanning electron microscopy surface examination and optical microscope metallography. It was determined that the tube failed from crevice corrosion under seawater deposits that had formed on the inner surface. Mechanical cleaning of the condenser tubes every 6 months and installation of intake screens of smaller mesh size were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001718
EISBN: 978-1-62708-220-4
... or inadequate head. Corrosion pitting, crevice corrosion, and solidification cracks (casting defect) also contributed to the failure. Cavitation corrosion Hydrochloric acid Pump impellers Grade 702 UNS R60702 Crevice corrosion Casting-related failures Pitting corrosion Remnants of two...
Abstract
Post-service destructive evaluation was performed on two commercially pure zirconium pump impellers. One impeller failed after short service in an aqueous hydrochloric acid environment. Its exposed surfaces are bright and shiny, covered with pockmarks, and peppered with pitting. Uniform corrosion is evident and two deep linear defects are present on impeller blade tips. In contrast, the undamaged impeller surfaces are covered with a dark oxide film. This and many other impellers in seemingly identical service conditions survive long lives with little or no apparent damage. No material or manufacturing defects were found to explain the different service performance of the two impellers. Microstructure, microhardness and material chemistry are consistent with the specified material. Examination reveals the damage mechanism to be corrosion-enhanced cavitation erosion, the most severe form of erosion corrosion. Cavitation damage to the protective oxide film caused the zirconium to lose its normally outstanding corrosion resistance. The root cause of the impeller failure is most likely the introduction of excessive air into the pump due to low liquid level, a bad seal or inadequate head. Corrosion pitting, crevice corrosion, and solidification cracks (casting defect) also contributed to the failure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001049
EISBN: 978-1-62708-214-3
.... Cracking resulted during installation from the use of a material susceptible to hot cracking. Deep corrosion fissures then developed at hot crack sites as a result of crevice corrosion. Use of the appropriate overlay material was recommended. Selected Reference Selected Reference • Forms...
Abstract
Routine inspections of a carbon steel wood pulp digester revealed a sharply increasing number of cracks in the overlay metal on the internal surface of the digester after 1 and 2 years of service. The weld overlay was composed of type 309 stainless steel on the top fourth of the digester and of a proprietary high-nickel material on the bottom three-fourths. Examination revealed three distinct modes of deterioration. General corrosion was linked to the use of unspecified overlay metal. Cracking resulted during installation from the use of a material susceptible to hot cracking. Deep corrosion fissures then developed at hot crack sites as a result of crevice corrosion. Use of the appropriate overlay material was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001635
EISBN: 978-1-62708-221-1
.... There were two modes of failure of the wire: tensile and corrosion related. The predominant corrosion mechanism appeared to be crevice corrosion related, with the corrosion being driven by the retention of water by the cover material around the wire strands. In this case study (and in most wire-reinforced...
Abstract
A hoist lift hose on a loader failed catastrophically. The hoses were a 100R13 type (as classified in AS3791-1991) with 50.8 mm nominal internal diameter. They consisted of six alternating spirals of heavy wire around a synthetic rubber inner tube with a synthetic rubber outer sheath. Failure of the lift hose was approximately 50 to 100 mm away from the "upper" end of the hose, with the straight coupling that attaches to the hydraulic system. The return hose was in much better condition, with no apparent deformation and only small areas of mechanical damage to the outer sheath. There were two modes of failure of the wire: tensile and corrosion related. The predominant corrosion mechanism appeared to be crevice corrosion related, with the corrosion being driven by the retention of water by the cover material around the wire strands. In this case study (and in most wire-reinforced hydraulic hoses), the wire reinforcing strands were a medium-carbon steel in the cold drawn condition. Radiographic nondestructive testing (NDT) was recommended to determine when a hydraulic hose should be replaced.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching. corrosion crevice corrosion dealuminification...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001386
EISBN: 978-1-62708-215-0
... the load cells had been subjected to regular washdowns using high-pressure hot water, and the pitting was attributed to crevice corrosion between the load cell and the holddown bolts. Prevention of such corrosion by the use of a flexible sealant to eliminate the crevice was recommended. Selected...
Abstract
Two type 420 martensitic stainless steel load cell bodies, which had been installed under two of the four legs of a milk storage tank failed in service. The failure occurred near a change in section and involved fracture of the entire cross section. Examination showed a brittle fracture that was preceded by a small fatigue region. Pitting corrosion was evident at the fracture origin. The areas around the load cells had been subjected to regular washdowns using high-pressure hot water, and the pitting was attributed to crevice corrosion between the load cell and the holddown bolts. Prevention of such corrosion by the use of a flexible sealant to eliminate the crevice was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048043
EISBN: 978-1-62708-224-2
... terminal specimen. It was indicated by the holes in the region adjoining the crack and rough texture of the crack surface that a corrosive medium (presumably seawater) had entered the crack from the inner surface of the fitting and coupled with the hairline crack to develop crevice corrosion. The crack...
Abstract
An AISI type 303(Se) stainless steel eye terminal that was roll swaged on the end of a 9.5 mm diam wire rope cracked extensively after one year of service. A hairline crack that had initiated at the inner surface of the fitting was revealed by metallographic examination of a sectioned terminal specimen. It was indicated by the holes in the region adjoining the crack and rough texture of the crack surface that a corrosive medium (presumably seawater) had entered the crack from the inner surface of the fitting and coupled with the hairline crack to develop crevice corrosion. The crack propagated toward the outer surface due to high residual stresses in the swaged metal and was followed closely by corrosion. Stress corrosion as result of a combination of residual stresses plus load stress and corrosion was found to cause the failure. Rotary swaging or swaging in a punch press was recommended instead of roll swaging as they made deformation more symmetrical.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001237
EISBN: 978-1-62708-220-4
... stresses. The narrow gap between vessel and mild steel casing may have aggravated the situation in that it hindered ventilation and evaporation of condensation and favored the absorption and concentration of acids and salts. Contact and crevice corrosion due to deposition of rust from the mild steel casing...
Abstract
A welded vessel made of acid resistant 18-8 steel used in a derusting operation started to leak after a long period due to the formation of cracks. The vessel was heated from the outside and did not come into direct contact with the flame. It was surrounded by a casing of unalloyed steel. Where the cracks had not eroded away, it was clear they ran transcrystalline, indicative of stress-corrosion cracking. Because the cracks propagated from the outer surface of the vessel, they were not caused by the derusting agent but by the external atmosphere in conjunction with welding stresses. The narrow gap between vessel and mild steel casing may have aggravated the situation in that it hindered ventilation and evaporation of condensation and favored the absorption and concentration of acids and salts. Contact and crevice corrosion due to deposition of rust from the mild steel casing may have contributed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001395
EISBN: 978-1-62708-220-4
... was at such a distance from the weld that the heat of welding could have raised the metal temperature to 550 to 700 deg C (1292 deg F). The corrosion of the shell material which occurred at the shell side of the weld under the backing ring is also an example of crevice corrosion. Leakage Sensitization Storage...
Abstract
Leakage which developed from two storage vessels handling a mixture of trimethyl formate and chloroform took place from the dished head at the edge of the circumferential weld to the shell which incorporated a backing ring. Some shallow pitting had occurred under the backing ring on the shell side behind the tack welds securing the backing strip to the shell. Intermittent pitting had also occurred along the head side of the weld at the other end the vessel. There was no pitting along the main longitudinal weld of the shells in any vessel nor around any of the branches set into the shells. The material of the original vessels was specified as BS 970 - 1966. En 58J. Sections taken through pitted areas from both head welds showed preferential attack along the grain-boundaries, some grains becoming completely detached. The location of the pitting and preferential attack was at such a distance from the weld that the heat of welding could have raised the metal temperature to 550 to 700 deg C (1292 deg F). The corrosion of the shell material which occurred at the shell side of the weld under the backing ring is also an example of crevice corrosion.
Image
in Stress-Corrosion Cracking of an Inconel 600 Safe-End on a Reactor Nozzle
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Cross section through recirculation inlet nozzle of reactor vessel. Shown are the nozzle, the safe-end that failed, and the thermal sleeve that created susceptibility to crevice corrosion. Dimensions given in inches
More
Image
in Crevice-Corrosion Failure of Evaporator Tubes Because of Defective Seam Welds
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 1 Section through a type 309S (Nb) stainless steel evaporator tube containing a defective seam weld. The cavity shown resulted from crevice corrosion and extended longitudinally below the inner surface of the weld. 60×
More
Image
in Crevice Corrosion of Tubing in a Hydraulic-Oil Cooler
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Copper alloy C70600 tube from a hydraulic-oil cooler. The cooler failed from crevice corrosion caused by dirt particles in river water that was used as a coolant. (a) Inner surface of hydraulic-oil cooler tube containing a hole (arrow A) and nodules (one of which is indicated by arrow B
More
Image
in Galvanic-Corrosion Failure of a Malleable Iron Latch in a Valve for an Automatic Sprinkler System
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
effects of galvanic attack at area of contact (near top) with cast copper alloy clapper plate and crevice corrosion (lower left). (c) Micrograph of a cross section of the failure area on the clapper latch showing the pattern of the corrosion and elongated grains in the microstructure (indicative
More
1