1-20 of 109 Search Results for

creep-resistant steels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... of creep °C °F T as ratio of T M , K Aluminum alloys 150–200 300–400 0.48–0.54 T M Titanium alloys 315 600 0.3 T M Low-alloy steels 370 700 0.36 T M Austenitic, iron-base, heat-resisting alloys 540 1000 0.49 T M Nickel- and cobalt-base heat-resisting alloys...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... group Temperature for onset of creep °C °F T as ratio of T M , K Aluminum alloys 150–200 300–390 0.48–0.54 T M Titanium alloys 315 600 0.3 T M Low-alloy steels 370 700 0.36 T M Austenitic, iron-base heat-resisting alloys 540 1000 0.49 T M...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001711
EISBN: 978-1-62708-229-7
..., as a function of oxidation thickness, temperature and time, confirming the creep failure diagnostic. Boiler pipes Electric power generation Steam 10CrMo9-10 X20MoV12-1 Creep fracture/stress rupture Introduction Carbon steels are not adequate for boiler pipes, which must work for long times...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001735
EISBN: 978-1-62708-220-4
... showed the welds to be inadequate, and to have a strength and creep resistance below those of the base metal. Reformer furnaces Tubine Welded joints HK-40 UNS J94224 Creep fracture/stress rupture A sample tube was removed from a reformer furnace for life assessment after 69,000 h...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091028
EISBN: 978-1-62708-229-7
.... Electric power generation Overheating Superheater tubes ASTM A213 grade T22 UNS K21590 Creep fracture/stress rupture Failure occurred in a steel superheater tube in a power plant. The tube was specified as ASTM A 213 grade T 22, and the reported operating conditions were 13 MPa (1900 psi) at 482...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
..., spheroidization is more commonly observed compared to graphitization. Like spheroidization, graphitization can appreciably reduce the tensile strength of material and the creep resistance. Figure 8 is a micrograph showing the graphitized microstructure from a carbon steel pressure vessel after it had been...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001771
EISBN: 978-1-62708-241-9
... the austenite grain represented a solid solution of Fe–Cr–Ni, whereas the grain boundaries contain lamellar layers of chromium carbide. This microstructure is suitable for creep resistance [ 8 ]. On the other hand, at high temperature, the growth of carbide in grain boundary takes place and produces...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001279
EISBN: 978-1-62708-215-0
... of pearlite into ferrite and carbon (graphite) that sometimes occurs in carbon or carbon-molybdenum steels subjected to moderate overheating for long periods of time. This microstructural change can embrittle steel parts, and reduce strength and creep resistance. Pearlite decomposes by either graphitization...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001280
EISBN: 978-1-62708-215-0
... that the sulfur and phosphorus contents of the weld metal were higher than specified, the thickness was narrower at the weld, and the mechanical resistance of the weld metal was lower than specified. Cracking initiated at the weld root by coalescence of creep cavities. Propagation and expansion was aided...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001475
EISBN: 978-1-62708-234-1
... violence. The tube approximately 30 ft. long by 6 in. diam, was constructed of three spun cast sections butt welded together. The material specified for tubes for this service was basically a 25% chromium, 20% nickel, cast stainless steel containing 0.4% carbon to optimize creep resistance. Failure...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001337
EISBN: 978-1-62708-215-0
... examined. It was concluded that preferential nucleations of graphite nodules in a series of bands weakened the steel locally, producing preferred fracture paths. Formation of these graphite bands probably expedited the creep failure of the tube. Future failures may be avoided by using low-alloy steels...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... of the tube diameter shows an increase. A metallurgical analysis of the microstructure of the steel should be performed to confirm that the tube temperature prior to failure was high enough to transform the ferrite to austenite. Fig. 1 Typical short-term overheating and long-term creep failures...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001688
EISBN: 978-1-62708-234-1
... and was probably a replacement tube, although no operating records mentioned this. The microstructural degradation noted in the others ( Figure 1 ) corresponds to Stage D of spheroidization, using the classification of Toft and Marsden ( 1 ). The reduced creep resistance to be expected in the tube material...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001687
EISBN: 978-1-62708-220-4
... of the material is dependent upon the amount of primary and secondary carbides formed at or near grain boundaries. It has been found ( 4 , 5 , 6 ) that between 0.3 to 0.5wt% carbon, optimize the creep resistance of the alloy. Failure in these alloys is known ( 1 , 2 , 3 , 4 , 5 , 6 , 7 ) to occur...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001330
EISBN: 978-1-62708-215-0
... Abstract Two superheater tubes from a 6.2 MPa (900 psig) boiler failed in service because of creep rupture. One tube was carbon steel and the other was carbon steel welded to ASTM A213 Grade T22 (2.25Cr-1.0Mo) tubing. The failure in the welded tube occurred in the carbon steel section. Portions...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... and power turbines and, in some cases, the aft-most stages of the compressor. Therefore, creep-resistant nickel and cobalt-base superalloys are typically used for components in these high-temperature regions of the gas turbine. There are multiple mechanisms by which creep manifests in a material...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... stainless steel and nickel-base alloys can suffer from severe nitridation attack, resulting in loss of creep strength and/or ductility. Alloys are susceptible to nitridation attack in combustion environments even when such environments are oxidizing. Increasing iron in the alloy increases its susceptibility...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... are fractures), the failure analyst is called upon to identify the origin of the fracture and the mechanism(s) of crack propagation. In general, the three general “modes” or types of metal fracture include failures from overload, fatigue, and creep. These three modes of fracture are briefly summarized in Table...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001712
EISBN: 978-1-62708-234-1
... I.D. oxidation up to 3 mm, stemming from shrinkage porosity heavily spherodized, grey, primary carbonitrides O.D. surface decarburization with oxidation - 1 mm thick non-aligned creep voids throughout 1C similar to above 1F primary carbonitrides less heavily...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... When dealing with a fracture (not all failures are fractures), the failure analyst must identify the origin of the fracture and the mechanism(s) of crack propagation. In general, the three general modes or types of metal fracture include failures from overload, fatigue, and creep. These three modes...