Skip Nav Destination
Close Modal
By
Arun Sreeranganathan, Douglas L. Marriott
By
P.G. Caceres, K. Habib
By
J. F. Henry, F. V. Ellis, J. Alice, J. K. LaFontaine, P. C. Orban
By
Daniel J. Benac, V.P. Swaminathan, Ph.D.
By
Wesley D. Pridemore
By
Imane Belyamani, Jérémy Grondin
By
Kayla Thackeray, Jeffrey Hinkley
By
Z. Mazur, J. Kubiak, C. Mariño-Lopez
By
Donald E. Duvall
By
J.J. Hickey, J.H. Bulloch
By
Sergio N. Monteiro, Paulo Augusto M. Araujo
By
Sarah Jane Hahn, Tom Kurtz
By
Sergio N. Monteiro
By
David J. Kotwica
Search Results for
creep properties
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 167
Search Results for creep properties
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Elevated-Temperature Life Assessment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... Property Council (MPC) Omega method ( Ref 28 – 30 ), which can be regarded mathematically as a special case of the Kachanov-Rabotnov model. The Kachanov-Rabotnov model is formulated under the assumption that creep damage results from an effective loss in material cross section due to internal voids...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Book Chapter
Failure Analysis of a Steam Reformer Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001687
EISBN: 978-1-62708-220-4
... properties. Grain boundary sliding and dislocation motion were enhanced, causing a local increase in the steady state strain rate and the premature failure of the tube. Grain boundary sliding Plastic deformation Spalling Voids HK UNS J94224 Creep fracture/stress rupture The petrochemical...
Abstract
Microstructural examinations on transverse cross sections of a steam reformer tube, showed the presence of large macrovoids elongated in the radial direction and emanating from the internal surface of the tube. The macrovoids were located at the interdendritic regions, and were partially filled by a Mn-Fe bearing chromium oxide film. The areas adjacent to the oxide film were chemically depleted in C, Cr and Mn and rich in Fe and Ni. Associated with this depletion were a large concentration of microvoids. It was suggested that the dissolution of carbides in areas surrounding the macrovoids and the concentration of stresses at their tips, caused extensive localized plastic deformation which led to the formation of microvoids and subsequently to the spalling of the oxide film. The non-protective character of the film induced a progressive deterioration of the grain boundaries properties. Grain boundary sliding and dislocation motion were enhanced, causing a local increase in the steady state strain rate and the premature failure of the tube.
Book Chapter
Failure Investigation of Longitudinal Seam Welded Elevated Temperature Header
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001669
EISBN: 978-1-62708-229-7
... of the header where peak temperatures were believed to have been reached. The long-term mechanical properties of the service-exposed base metal and creep-damaged weld metal were determined by creep testing. Based on the utility's decision to replace the header within one to three years, an isostress...
Abstract
As the result of a leak detected in a plate-formed header at PENELEC'S Shawville Unit No. 3, an extensive failure investigation was initiated to determine the origin of cracking visible along the longitudinal weld seam. Fabricated from SA387-D material and designed for a superheater outlet temperature of 566 deg C, the 11.4 cm thick header had operated for approximately 187,000 h at the time of the failure. Discussion focuses on the results of a metallographic examination of boat samples removed from the longitudinal seam weldment in the vicinity of the failure and at other areas of the header where peak temperatures were believed to have been reached. The long-term mechanical properties of the service-exposed base metal and creep-damaged weld metal were determined by creep testing. Based on the utility's decision to replace the header within one to three years, an isostress overtemperature lead specimen approach was taken, whereby failure of a test specimen in the laboratory would precede failures in the plant. These tests revealed approximately a 2:1 difference in life for the base metal as compared to weld metal.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... with available data on creep, stress-rupture, tension, elevated-temperature fatigue, and thermal fatigue properties. Such an analysis is usually sufficient for most failure investigations, but a more thorough analysis can be required when stress, time, temperature, and environment have changed the metallurgical...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Book Chapter
Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... The gradual change of the carbide microstructure under prolonged heating may lead to a reduction of creep-strength properties of as much as 25% or more of carbon steel, carbon-molybdenum steel, and certain of the low-alloy chromium-molybdenum steels ( Ref 7 ). The effect of temperature in changing the form...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book Chapter
Stress-Rupture Characterization in Nickel-Based Superalloy Gas Turbine Engine Components
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001758
EISBN: 978-1-62708-241-9
... true in the high pressure (HP) turbine region of the engine where actual metal surface temperatures of the turbine blades (buckets) can exceed 2000 ° F ∼ 0.75 T m , making creep and stress-rupture properties one of the more important variables in the overall life of the blade...
Abstract
This article describes the visual, fractographic, and metallographic evidence typically encountered when analyzing stress rupture of turbine airfoils. Stress-rupture fractures are generally heavily oxidized, tend to be rough in texture, and are primarily intergranular and/or interdendritic in appearance compared to smoother, transgranular fatigue type fractures. Often, gross plastic yielding is visible on a macroscopic scale. Commonly observed microstructural characteristics include creep voiding along grain boundaries and/or interdendritic regions. Internal voids can also nucleate at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries.
Book Chapter
Creep and Stress Rupture Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
...-operating conditions with available data on creep, stress-rupture, tension, elevated-temperature fatigue, and thermal fatigue properties. Such an analysis is usually sufficient for most failure investigations, but a more thorough analysis may be required when stress, time, temperature, and environment have...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090114
EISBN: 978-1-62708-229-7
... distribution through the thickness of the airfoil. In addition, the local strain at the edge of the hole (crack initiation location) was estimated using Neuber's rule and stress-strain-creep properties of the material. The nominal elastic stress through the blade airfoil thickness was computed using a flat...
Abstract
The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling holes' surface was not coated. Investigation supported the conclusions that the cracking at the cooling holes was due to grain-boundary oxidation and nitridation at the cooling hole surface, embrittlement and loss of local ductility of the base alloy, temperature gradient from the airfoil surface to the cooling holes, which led to relatively high thermal stresses at the holes located at the thicker sections of the airfoil, and stress concentration of 2.5 at the cooling hole and the presence of relatively high total strain (an inelastic strain of 1.2%) at the cooling hole surface. Recommendations include applying the specially designed methods given in this case study to estimate the metal temperature and stresses in order to predict the life of turbine blades under similar operating conditions.
Book Chapter
Creep, Stress Relaxation, and Yielding Mechanisms
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
... forces, mainly over the long term (several years), is of great importance. The mechanisms that govern the creep failure in polymer materials are more complex than those identified for metals and ceramics. This is explained by the viscoelastic properties of plastics, their long and mobile chain...
Abstract
This article describes the general aspects of creep, stress relaxation, and yielding for homogeneous polymers. It then presents creep failure mechanisms in polymers. The article discusses extrapolative methods for the prediction of long-term creep failure in polymer materials. Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric method, one of the most common to describe the material deformation and rupture time, is also discussed.
Book Chapter
Mechanical Testing and Properties of Plastics—An Introduction
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... Abstract This article briefly introduces some commonly used methods for mechanical testing. It describes the test methods and provides comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are also briefly...
Abstract
This article briefly introduces some commonly used methods for mechanical testing. It describes the test methods and provides comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are also briefly described. The article discusses the processes involved in the short-term and long-term tensile testing of plastics. Information on the strength/modulus and deflection tests, impact toughness, hardness testing, and fatigue testing of plastics is also provided. The article describes tension testing of elastomers and fibers. It covers two basic methods to test the mechanical properties of fibers, namely the single-filament tension test and the tensile test of a yarn or a group of fibers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... long it takes to develop, depends on the viscoelastic properties of the plastic. Experimental Analysis Two common ways of evaluating plastics for their viscoelastic character are by means of creep experiments and dynamic mechanical experiments. Results obtained from creep experiments...
Abstract
This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies, as well as the dependence of the viscoelastic character of a plastic on chemical, physical, and compositional variables. By examining the viscoelastic behavior of plastics, the information obtained are then applied in situations in which it may be important to anticipate the long-term properties of a material. This includes assessing the extent of stress decay in materials that are pre-stressed, the noise and vibration transmission characteristics of a material, the amount of heat build-up in a material subjected to cyclic deformation, and the extent a material can recover from any prior deformation. Several qualitative graphs are presented, which highlights the possible differences in the viscoelastic behavior that can exist among plastics.
Book Chapter
Cracking of a Polyethylene Chemical Storage Vessel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090454
EISBN: 978-1-62708-220-4
... solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses...
Abstract
A chemical storage vessel failed while in service. The failure occurred as cracking through the vessel wall, resulting in leakage of the fluid. The tank had been molded from a high-density polyethylene (HDPE) resin. The material held within the vessel was an aromatic hydrocarbon-based solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses. The source of the stress was thought to be molded-in residual stresses associated with uneven shrinkage. This was suggested by obvious distortion evident on cutting the vessel. Relatively high specific gravity and the elevated heat of fusion indicated that the material had a high level of crystallinity. In general, increased levels of crystallinity result in higher levels of molded-in stress and the corresponding warpage. The significant reduction in the modulus of the HDPE material, which accompanied the saturation of the resin with the aromatic hydrocarbon-based solvent, substantially decreased the creep resistance of the material and accelerated the failure.
Book Chapter
Failure Analysis of Gas Turbine Last Stage Bucket Made of Udimet 500 Superalloy
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001602
EISBN: 978-1-62708-229-7
.... , and Kubiak J. : Rev. Metal. Madrid (in Spanish), 1999 , 35 ( 1 ), pp. 39 – 46 . 10.3989/revmetalm.1999.v35.i1.604 3. Goward G.W. : Turbomach. Int. , May-June 1985 , pp. 24 – 8 . 4. Galsworthy J.C. : The Effects of Seasalt on the High Temperature Creep Properties...
Abstract
This article presents a failure analysis of 37.5 mW gas turbine third stage buckets made of Udimet 500 superalloy. The buckets experienced repetitive integral tip shroud fractures assisted by a low temperature (type II) hot corrosion. A detailed analysis was carried out on elements thought to have influenced the failure process: a) the stress increase from the loss of a load bearing cross-sectional area of the bucket tip shroud by the conversion of metal to the corrosion product (scale), b) influence of the tip shroud microstructure (e.g., a presence of equiaxed and columnar grains, their distribution and orientation), c) evidence of the transgranular initiation, and d) intergranular creep mechanism propagation. The most probable cause of the bucket damage was the combination of increased stresses due to corrosion-induced thinning of the tip shroud and unfavorable microstructures in the tip shroud region.
Book Chapter
Effect of Environment on the Performance of Plastics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... includes such things as tensile and impact strengths. Long-term properties include creep, stress relaxation, and creep (stress) rupture. Both categories of properties are affected by exposure to external chemical environments. With any polymeric material, chemical exposure may have one or more...
Abstract
The article commences with an overview of short-term and long-term mechanical properties of polymeric materials. It discusses plasticization, solvation, and swelling in rubber products. The article further describes environmental stress cracking and degradation of polymers. It illustrates how surface degradation of a plain strain tension specimen alters the ductile brittle transition in polyethylene creep rupture. The article concludes with information on the effects of temperature on polymer performance.
Book Chapter
Failure Analysis of a Set of 1CrMoV Studs From a Steam Turbine and Techniques for Its Assessment
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001004
EISBN: 978-1-62708-229-7
... the beneficial effects that P had on hot ductility properties. Recently Yu and Grabke ( 7 ) observed that the minimum creep rate was increased with P additions. In addition to this effect of P on cavity and carbide formation it was evidenced that P increased the density of Manganese Sulphide non-metallic...
Abstract
The results of a failure analysis of a series of Cr-Mo-V steel turbine studs which had experienced a service lifetime of some 50,000 h are described. It was observed that certain studs suffered complete fracture while others showed significant defects located at the first stress bearing thread. Crack extension was the result of marked creep embrittlement and reverse temper embrittlement (RTE). Selected approaches were examined to assess the effects of RTE on the material toughness of selected studs. It was observed that Auger electron microscopy results which indicated the extent of grain boundary phosphorus segregation exhibited a good relationship with ambient temperature Charpy data. The electrochemical polarization kinetic reactivation, EPR, approach, however, proved disappointing in that the overlapping scatter in the minimum current density, Ir, for an embrittled and a non-embrittled material was such that no clear decision of the toughness properties was possible by this approach. The initial results obtained from small punch testing showed good agreement with other reported data and could be related to the FATT. Indeed, this small punch test, combined with a miniature sample sampling method, represents an attractive approach to the toughness assessment of critical power plant components.
Book Chapter
Failure of a Reformer Tube Weld by Cracking
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001280
EISBN: 978-1-62708-215-0
... that the sulfur and phosphorus contents of the weld metal were higher than specified, the thickness was narrower at the weld, and the mechanical resistance of the weld metal was lower than specified. Cracking initiated at the weld root by coalescence of creep cavities. Propagation and expansion was aided...
Abstract
An HK-40 alloy tubing weld in a reformer furnace of a petrochemical plant failed by leaking after a shorter time than that predicted by design specifications. Leaking occurred because of cracks that passed through the thickness of the weldment. Analysis of the cracked tubing indicated that the sulfur and phosphorus contents of the weld metal were higher than specified, the thickness was narrower at the weld, and the mechanical resistance of the weld metal was lower than specified. Cracking initiated at the weld root by coalescence of creep cavities. Propagation and expansion was aided by internal carburization. Quality control of welding procedures and filler metal was recommended.
Book Chapter
Creep Failure of a Superheater Tube Promoted by Graphitization
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001279
EISBN: 978-1-62708-215-0
... outage. Boiler tubes Graphitization Mechanical properties ASME SA219-T1A UNS K12023 High-temperature corrosion and oxidation Creep fracture/stress rupture Background Applications The superheater tubes were from a utility boiler, a base-loaded unit that had been in service for 13...
Abstract
Tube 3 from a utility boiler in service for 13 years under operating conditions of 540 deg C (1005 deg F), 13.7 MPa (1990 psi) and 1,189,320 kg/h (2,662,000 lb/h) incurred a longitudinal rupture near its 90 deg bend while Tube 4 from the same boiler exhibited deformation near its bend. Metallographic examination revealed creep voids near the rupture in addition to graphite nodules. Exposure of the SA209 Grade T1A steel tubing to a calculated mean operating temperature of 530 deg C (983 deg F) for the 13 years resulted in graphitization and subsequent creep failure in Tube 3. The deformation in Tube 4 was likely the result of steam washing from the Tube 3 failure. Graphitization observed remote from the rupture in Tube 3 and in Tube 4 indicated that adjacent tubing also was susceptible to creep failure. In-situ metallography identified other graphitized tubes to be replaced during a scheduled outage.
Book Chapter
High-Temperature Failure by Perforation of Incoloy 800H Pigtails in Reformer Furnaces
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001108
EISBN: 978-1-62708-214-3
.... Metals Handbook , 9th ed. , Vol 3 , Properties and Selection: Stainless Steels, Tool Materials and Special Purpose Metals , American Society for Metals , 1980 , p 214 . Selected References Selected References • Creep and Stress Rupture Failures , Failure Analysis and Prevention , Vol...
Abstract
The curved parts of exit pigtails made of wrought Incoloy 800H tubing used in steam reforming furnaces failed by performance after a period of service shorter than that predicted by the designers. Examination of a set of tubes consisting of both curved (perforated) and straight parts revealed that the cracks initiated at the outer surface by a combined mechanism of creep and intergranular embrittlement. A smaller grain size resulting from cold bending fabrication procedures for the curved parts was responsible for accelerating the embrittlement. It was recommended that hot bending be used for fabrication of the curved parts. A change of alloy to a low-alloy chromium-molybdenum allay to protect against heat was also suggested.
Book Chapter
Graphitization-Related Failure of a Low-Alloy Steel Superheater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001337
EISBN: 978-1-62708-215-0
... with chromium additions such as ASTM A213 Grade T11 or T22, which are resistant to graphitization damage. Boiler tubes Creep (materials) Graphitization, Heating effects Mechanical properties Microstructural effects Overheating ASTM A209 grade T1 UNS K11522 High-temperature corrosion and oxidation...
Abstract
A carbon-molybdenum (ASTM A209 Grade T1) steel superheater tube section in an 8.6 MPa (1250 psig) boiler cracked because of long-term overheating damage that resulted from prolonged exposure to metal temperatures between 482 deg C (900 deg F) and 551 deg C (1025 deg F). The outer diameter of the tube exhibited a crack (fissure) oriented approximately 45 deg to the longitudinal axis and 3.8 cm (1.5 in.) long. The inner diameter surface showed a fissure in the same location and orientation. Microstructure at the failure near the outer diameter surface exhibited evidence of creep cracking and creep void formation at the fissure. A nearly continuous band of graphite nodules was observed on the surface of the fissure. In addition to the graphite band formation, the microstructure near the failure exhibited carbide spheroidization from long-term overheating in all the tube regions examined. It was concluded that preferential nucleations of graphite nodules in a series of bands weakened the steel locally, producing preferred fracture paths. Formation of these graphite bands probably expedited the creep failure of the tube. Future failures may be avoided by using low-alloy steels with chromium additions such as ASTM A213 Grade T11 or T22, which are resistant to graphitization damage.
Book Chapter
Failure of a Main Steam Line of a Power-Generating Station
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048846
EISBN: 978-1-62708-234-1
... were found contain small cracks and microvoids. A mechanism of intergranular creep rupture at elevated temperature was identified as a result of a series of stress-rupture and tensile tests. It was revealed by the crack shape that cracking initiated on the pipe exterior, then propagated inward...
Abstract
A main steam pipe was found to be leaking due to a large circumferential crack in a pipe-to-fitting weld in one of two steam leads between the superheater outlet nozzles and the turbine stop valves (a line made of SA335-P22 material). The main crack surface was found to be rough, oriented about normal to the outside surface, and had a dark oxidized appearance. The cracking was found to be predominantly intergranular. Distinct shiny bands that etched slower than the remainder of the sample at the top of each individual weld bead were revealed by microscopic examination. These bands were found contain small cracks and microvoids. A mechanism of intergranular creep rupture at elevated temperature was identified as a result of a series of stress-rupture and tensile tests. It was revealed by the crack shape that cracking initiated on the pipe exterior, then propagated inward and in the circumferential direction in response to a bending moment load. It was concluded that the primary cause of failure was the occurrence of bending stresses that exceeded the stress levels predicted by design calculations and that were higher than the maximum allowable primary membrane stress.
1