Skip Nav Destination
Close Modal
Search Results for
cracks
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 4126 Search Results for
cracks
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048795
EISBN: 978-1-62708-220-4
... in the structure of the flange forging was revealed by examination. A greater susceptibility to cracking was interpreted from the higher hardenability found within the bands. Stress relief was concluded to have not been performed at the specified temperature level (by hardness and impact tests) which caused...
Abstract
A large pressure vessel designed for use in an ammonia plant failed during hydrostatic testing. It was fabricated from ten Mn-Cr-Ni-Mo-V steel plates which were rolled and welded to form ten cylindrical shell sections and three forgings of similar composition. The fracture surfaces were metallographically examined to be typical for brittle steel fracture and associated with the circumferential weld that joined the flange forging to the first shell section. Featureless facets in the HAZ were observed and were revealed to be the fracture-initiation sites. Pronounced banding in the structure of the flange forging was revealed by examination. A greater susceptibility to cracking was interpreted from the higher hardenability found within the bands. Stress relief was concluded to have not been performed at the specified temperature level (by hardness and impact tests) which caused the formation of hard spots. The mode of crack propagation was established by microstructural examination to be transgranular cleavage. It was concluded that failure of the pressure vessel stemmed from the formation of transverse fabrication cracks in the HAZ fostered by the presence of hard spots. It was recommended that normalizing and tempering temperatures be modified and a revised forging practice explored.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001062
EISBN: 978-1-62708-214-3
... Abstract The causes of internal cracking that occurred in 9% Ni steel castings during manufacture were investigated using a series of eight laboratory castings containing varying amounts of molybdenum. The effect of mold thickness was also investigated. The laboratory castings were subjected...
Abstract
The causes of internal cracking that occurred in 9% Ni steel castings during manufacture were investigated using a series of eight laboratory castings containing varying amounts of molybdenum. The effect of mold thickness was also investigated. The laboratory castings were subjected to three-point bend testing, and fracture surfaces were examined using SEM fractography, metallography, and depth analysis (SIMS) of the fracture surface. The cracks were found to originate at austenitic grain boundaries that coincided with primary dendrite interfaces. The cracking was attributed to a decrease in grain-boundary cohesion resulting from sulfur segregation. Addition of molybdenum proved effective in preventing cracking. The molybdenum promoted MnS precipitation in the grain and preferentially segregated to the interfaces.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001367
EISBN: 978-1-62708-215-0
... Abstract Cracking was discovered in an in-service, second-stage turbine impeller during a downtime inspection. The fabricated 4300 series low-alloy steel impeller was used in a compressor in an industrial petrochemical plant. It was also reported that a process upset had allowed a 10% NaOH...
Abstract
Cracking was discovered in an in-service, second-stage turbine impeller during a downtime inspection. The fabricated 4300 series low-alloy steel impeller was used in a compressor in an industrial petrochemical plant. It was also reported that a process upset had allowed a 10% NaOH solution to be ingested by the unit. Routine magnetic particle inspection revealed numerous cracks in the hub area and vane tips of the second-stage impeller Additionally, the outside surface of the backing plate showed a cyclic pattern of cracks. An overview of a conventional, systematic metallurgical approach to failure analysis to confirm that the cracking was caused by a caustic stress-corrosion cracking mechanism is presented.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001175
EISBN: 978-1-62708-231-0
... Abstract A water tube boiler with two headers and 15.5 atm working pressure became leaky in the lower part due to the formation of cracks in the rivet-hole edges. The boiler plate of 20 mm thickness was a rimming steel with 0.05% C, traces of Si, 0.38% Mn, 0.027% P, 0.035% S, and 0.08% Cu...
Abstract
A water tube boiler with two headers and 15.5 atm working pressure became leaky in the lower part due to the formation of cracks in the rivet-hole edges. The boiler plate of 20 mm thickness was a rimming steel with 0.05% C, traces of Si, 0.38% Mn, 0.027% P, 0.035% S, and 0.08% Cu. The mean value of the yield point was 24 (24) kg/sq mm, the tensile strength 39 (38) kg/sq mm, the elongation at fracture, d10, 26 (24)%, the necking at fracture 71 (66)% and notch impact value 11.5 (9.4) kgm/sq cm (the values in brackets are for the transverse direction). The specimen from inside surface of the boiler was polished and etched with Fry-solution, which revealed parallel striations formed due to the cold bending of the plate. The zones of slip were concentrated around the rivet holes. The cracks were formed here. The structure examination proved that the cracks had taken an exactly intercrystalline path, which is characteristic for caustic corrosion cracks. It was recommended that the internal stresses be removed through annealing or alternatively lye-resistant steel should be used.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047558
EISBN: 978-1-62708-236-5
... that had been subjected to appreciable rubbing. The fracture appeared to be typical of rotary bending fatigue under conditions of a low nominal stress with a severe stress concentration. It appeared that the fatigue cracks initiated in the surface-weld layer. The weld deposit in the original keyway...
Abstract
The shaft of an exciter that was used with a diesel-driven electric generator broke at a fillet after ten hours of service following resurfacing of the shaft by welding. The fracture surface contained a dull off-center region of final ductile fracture surrounded by regions of fatigue that had been subjected to appreciable rubbing. The fracture appeared to be typical of rotary bending fatigue under conditions of a low nominal stress with a severe stress concentration. It appeared that the fatigue cracks initiated in the surface-weld layer. The weld deposit in the original keyway displays a lack of fusion at the bottom corner. Fatigue fracture of the shaft resulted from stresses that were created by vibration acting on a crack or cracks formed in the weld deposit because of the lack of preheating and postheating. Rebuilding of exciter shafts should be discontinued, and the support plate of the exciter should be braced to reduce the amount of transmitted vibration. Also, the fillet in the exciter shaft should be carefully machined to provide an adequate radius.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047586
EISBN: 978-1-62708-236-5
... Abstract A fuel-nozzle-support assembly showed transverse indications after fluorescent liquid-penetrant inspection of a repair-welded area at a fillet on the front side of the support neck adjacent to the mounting flange. Visual examination disclosed an irregular crack. The crack through...
Abstract
A fuel-nozzle-support assembly showed transverse indications after fluorescent liquid-penetrant inspection of a repair-welded area at a fillet on the front side of the support neck adjacent to the mounting flange. Visual examination disclosed an irregular crack. The crack through the neck was sectioned; examination showed that the crack had extended through the repair weld. The crack had followed an intergranular path. The crack was opened, and binocular-microscope examination of the fracture surface showed that the surface contained dendrites with discolored oxide films that were typical of exposure to air when very hot. Several additional subsurface cracks, typical of hot tears, were observed in and near the weld. There had been too much local heat input in making the repair weld. The result was localized thermal contraction and hot tearing. The cracking of the repair weld was attributed to unfavorable welding practice that accentuated thermal contraction stresses and caused hot tearing. Recommendations involved use of a small-diameter welding electrode, a lower heat input, and deposition in shallow layers that could be effectively peened between passes to minimize internal stress.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046044
EISBN: 978-1-62708-235-8
... Abstract A rocket-motor case made of consumable-electrode vacuum arc remelted D-6ac alloy steel failed during hydrostatic proof-pressure testing. Close visual examination, magnetic-particle inspection, and hardness tests showed cracks that appeared to have occurred after austenitizing...
Abstract
A rocket-motor case made of consumable-electrode vacuum arc remelted D-6ac alloy steel failed during hydrostatic proof-pressure testing. Close visual examination, magnetic-particle inspection, and hardness tests showed cracks that appeared to have occurred after austenitizing but before tempering. Microscopic examinations of ethereal picral etched sections indicated that the cracks appeared before or during the final tempering phase of the heat treatment and that cracking had occurred while the steel was in the as-quenched condition, before its 315 deg C (600 deg F) snap temper. Chemical analysis of the cracked metal showed a slightly higher level of carbon than in the component that did not crack. X-ray diffraction studies of material from the fractured dome showed a very low level of retained austenite, and chemical analysis showed a slightly higher content of carbon in the metal of the three cracked components. Bend tests verified the conclusion that the most likely mechanism of delayed quench cracking was isothermal transformation of retained austenite to martensite under the influence of residual quenching stresses. Recommendations included modifying the quenching portion of the heat-treating cycle and tempering in the salt pot used for quenching, immediately after quenching.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001253
EISBN: 978-1-62708-235-8
... metallographically. Investigation showed this was a case where flaky forgings were made from cast ingots with primary grain boundary cracks. This parallelity supports the often expressed opinion that both occurrences have the same origin, i.e. that hydrogen precipitation was the driving force in the formation...
Abstract
Octagonal cast ingots weighing 6.5 tons and made of unalloyed heat treated steel CK 45 according to DIN 17200, and crankshafts forged from these ingots showed internal separations during ultrasonic testing. To determine the cause of defect, an ingot slice and a crank arm were examined metallographically. Investigation showed this was a case where flaky forgings were made from cast ingots with primary grain boundary cracks. This parallelity supports the often expressed opinion that both occurrences have the same origin, i.e. that hydrogen precipitation was the driving force in the formation of primary grain boundary cracks in cast ingots.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001212
EISBN: 978-1-62708-235-8
... Abstract Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded...
Abstract
Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded that the numerous hardening cracks were caused by abrupt quenching from over-heating temperature and by local stress concentrations due to indentations of the tool caused during alignment.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090932
EISBN: 978-1-62708-235-8
... Abstract Cold-drawn type 303 stainless steel wire sections, 6.4 mm (0.25 in.) in diameter, failed during a forming operation. All of the wires failed at a gradual 90 deg bend. Investigation (visual inspection and 5.3x/71x/1187x SEM views) supported the conclusion that the wires cracked due...
Abstract
Cold-drawn type 303 stainless steel wire sections, 6.4 mm (0.25 in.) in diameter, failed during a forming operation. All of the wires failed at a gradual 90 deg bend. Investigation (visual inspection and 5.3x/71x/1187x SEM views) supported the conclusion that the wires cracked due to ductile overload. The forming stresses were sufficient to initiate surface ruptures, suggestive of having exceeded the forming limit. Recommendations included examining the forming process, including lubrication and workpiece fixturing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001190
EISBN: 978-1-62708-235-8
... Abstract Brass pipe couplings submitted for examination were deep-drawn from disks then annealed and subsequently cold threaded. Chemical analysis confirmed that the specified alloy Ms 63 was used for fabrication. Some of the pipe already showed fine cracks prior to their installation. In most...
Abstract
Brass pipe couplings submitted for examination were deep-drawn from disks then annealed and subsequently cold threaded. Chemical analysis confirmed that the specified alloy Ms 63 was used for fabrication. Some of the pipe already showed fine cracks prior to their installation. In most cases however the cracks were detected after a certain period of operation. The intercrystalline course of the cracks indicated stress-cracking as it often appears in brass after heavier cold deformation. The splitting of the couplings could have been avoided by a tempering heat treatment at temperatures between 230 and 300 deg C after rolling the threads. This procedure would have reduced the internal stresses while maintaining strengthening gained by the cold deformation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0090639
EISBN: 978-1-62708-227-3
... Abstract Cracks initiating from the tip of the cloverleaf pattern in steel cargo tiedown sockets were observed by the builder following installation aboard several cargo vessels in various stages of construction. Testing of finite element models and measurements performed in the field on cargo...
Abstract
Cracks initiating from the tip of the cloverleaf pattern in steel cargo tiedown sockets were observed by the builder following installation aboard several cargo vessels in various stages of construction. Testing of finite element models and measurements performed in the field on cargo ships with the cracking problem supported the conclusion that the failure was caused by overload. Additional testing showed that the overload failure and the transition from ductile to brittle fracture were facilitated by a combination of high brittleness due to flame cutting, increased hardness due to the cold-working coining process, and high residual stresses created by welding. Recommendations included the removal of the brittle, carbon-rich transformed martensite layer introduced by flame cutting and the application of a localized stress-relief heat treatment process. X-ray diffraction residual-stress measurements were then performed on heat treated tiedown sockets to verify the effectiveness of the localized heat treatment process applied.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047840
EISBN: 978-1-62708-223-5
.... The fracture progressed into the threaded section and formed a pyramid-shape fragment after it was initiated at approximately 45 deg through the hole in the square end. An irregular zone of untempered martensite with cracks radiating from the surface of the hole (result of melting around hole) was revealed...
Abstract
The A2 tool steel mandrel, part of a rolling tool used for mechanically joining two tubes was fractured after making five rolled joints. A 6.4 mm diam hole was drilled by EDM through the square end of the hardened mandrel due to difficulty was experienced in withdrawing the tool. The fracture progressed into the threaded section and formed a pyramid-shape fragment after it was initiated at approximately 45 deg through the hole in the square end. An irregular zone of untempered martensite with cracks radiating from the surface of the hole (result of melting around hole) was revealed by metallographic examination. A microstructure of fine tempered martensite containing some carbide particles was exhibited by the core material away from the hole. Brittle fracture characteristics with beach marks were exhibited by the fracture surfaces which is characteristic of a torsional fatigue fracture. As a corrective measure, the hole through the square end of the mandrel was incorporated into the design of the tool and was drilled and reamed before heat treatment and specified hardness of the threaded portion and square end of the mandrel was reduced.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047165
EISBN: 978-1-62708-217-4
... Abstract Two outboard main-wheel halves (aluminum alloy 2014-T6 forged) from a commercial aircraft were removed from service because of failure. One wheel half was in service for 54 days and had made 130 landings (about 1046 roll km, or 650 roll mi) when crack indications were discovered during...
Abstract
Two outboard main-wheel halves (aluminum alloy 2014-T6 forged) from a commercial aircraft were removed from service because of failure. One wheel half was in service for 54 days and had made 130 landings (about 1046 roll km, or 650 roll mi) when crack indications were discovered during eddy-current testing. The flange on the second wheel half failed after only 31 landings, when about 46 cm (18 in.) of the flange broke off as the aircraft was taxiing. Stains on the fracture surfaces were used to determine when cracking was initiated. The analysis (visual inspection, liquid penetrant inspection, and micrographs with deep etching in aqueous 20% sodium hydroxide) supported the conclusion that failure on both wheel halves was by fatigue caused by a forging defect resulting from abnormal transverse grain flow. The crack in the first wheel half occurred during service, and the surfaces became oxidized. Because the fracture surface of the second wheel half had chromic acid stains, it was obvious that the forging defect was open to the surface during anodizing. No recommendations were made except to notify the manufacturer.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047541
EISBN: 978-1-62708-217-4
... to the throttle-linkage bar by an assembly-weld deposit made on the rod adjacent to the threaded portion. The fracture surface exhibited a coarse-grain brittle texture with an initiating crack at a thread root. The throttle-arm failed by brittle fracture because of the presence of cracks at the thread roots...
Abstract
A throttle arm of an aircraft engine fractured and caused loss of engine control. The broken part consisted of a 6.4-mm (1/4-in.) diam medium-carbon steel rod with a thread to fit a knurled brass nut that was inserted into the throttle knob. The threaded rod had been welded to the throttle-linkage bar by an assembly-weld deposit made on the rod adjacent to the threaded portion. The fracture surface exhibited a coarse-grain brittle texture with an initiating crack at a thread root. The throttle-arm failed by brittle fracture because of the presence of cracks at the thread roots that were within the HAZ of the adjacent weld deposit. The heat of welding had generated a coarse-grain structure with a weak grain-boundary network of ferrite that had not been corrected by postweld heat treatment. The combination of the cracks and this unfavorable microstructure provided a weakened condition that resulted in catastrophic, brittle fracture under normal applied loads. The design was altered to eliminate the weld adjacent to the threaded portion of the rod.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001836
EISBN: 978-1-62708-241-9
... Abstract An investigation was conducted to determine why 16 out of 139 pipe bends cracked during hot induction bending. The pipe conformed to API 5L X65 PSL2 line pipe standards and measured 1016 mm (40 in.) in diam with a wall thickness of 18.5 mm. A metallurgical cross section was removed...
Abstract
An investigation was conducted to determine why 16 out of 139 pipe bends cracked during hot induction bending. The pipe conformed to API 5L X65 PSL2 line pipe standards and measured 1016 mm (40 in.) in diam with a wall thickness of 18.5 mm. A metallurgical cross section was removed along a crack on the extrados to document the crack morphology using optical microscopy. In addition to cracking, golden-yellow streaks were visible at the extrados, and the composition was examined using scanning electron microscopy with energy dispersive spectroscopy. Based on the results, investigators concluded the pipe was contaminated with copper at the mill were it was produced.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001200
EISBN: 978-1-62708-221-1
... Abstract During the operation of tractors with cantilevered body, the lateral wall of the hypoeutectic cast iron cylinder blocks cracked repeatedly. Three of the blocks were examined. The grain structure of the thick-walled part consisted of uniformly distributed graphite of medium flake size...
Abstract
During the operation of tractors with cantilevered body, the lateral wall of the hypoeutectic cast iron cylinder blocks cracked repeatedly. Three of the blocks were examined. The grain structure of the thick-walled part consisted of uniformly distributed graphite of medium flake size in a basic mass of pearlite with little ferrite. But the thin-walled part showed a structure of dendrites of precipitated primary solid solution grains with pearlitic-ferritic structure and a residual liquid phase with granular graphite in the ferritic matrix. The structure was formed by undercooling of the residual melt. In this case, it was promoted by fast cooling of the thin wall and had comparatively low strength. The fracture formation in the cylinder blocks was ascribed primarily to casting stresses. They could be alleviated by better filleting of the transition cross sections. The fracture was promoted by the formation of undercooled microstructure of low strength in the thin-walled part. Similar damage appeared in a cylinder head, in which case, the cracks were promoted by a supercooled structure.
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 20 Typical micrographs of cracks in feedwater heater steels. (a) Cracks identified as corrosion fatigue mixed with SCC. 50×. (b) Corrosion-fatigue crack morphology alternating with corrosion pits and transgranular cracking. 100×
More
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 80 Typical micrographs of cracks in feedwater heater steels. (a) Cracks identified as corrosion fatigue mixed with stress-corrosion cracking. Original magnification: 50×. (b) Corrosion-fatigue crack morphology alternating with corrosion pits and transgranular cracking. Original
More
1