Skip Nav Destination
Close Modal
By
Roy G. Baggerly
By
D. G. Chakrapani
By
M.S. Pepi
By
Michelle Koul, Jennifer Gaies
By
E. Proverbio, L.M. Bonaccorsi
By
Victor K. Champagne, Gary Wechsler, Marc Pepi
By
D. G. Chakrapani
By
J. Morrison, P.D. Martin
By
Durgam G. Chakrapani
By
R.B. Tait, D.P. Spencer, P.R. Fry, G.G. Garrett
By
Stephen L. Meiley
By
Edward A. Lauchner, Robert E. Herfert
Search Results for
corrosion-assisted cracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 183
Search Results for corrosion-assisted cracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Hydrogen-Assisted Stress-Corrosion Cracking Failure of Four AISI 4137 Steel Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0001667
EISBN: 978-1-62708-225-9
... Abstract Hydrogen-assisted stress-corrosion cracking failure occurred in four AISI 4137 chromium molybdenum steel bolts having a hardness of 42 HRC. The normal service temperature (400 deg C, or 750 deg F) was too high for hydrogen embrittlement but, the bolts were subjected also to extended...
Abstract
Hydrogen-assisted stress-corrosion cracking failure occurred in four AISI 4137 chromium molybdenum steel bolts having a hardness of 42 HRC. The normal service temperature (400 deg C, or 750 deg F) was too high for hydrogen embrittlement but, the bolts were subjected also to extended shutdown periods at ambient temperatures. The corrosive environment contained trace hydrogen chloride and acetic acid vapors as well as calcium chloride if leaks occurred. The exact service life was unknown. The bolt surfaces showed extensive corrosion deposits. Cracks had initiated at both the thread roots and the fillet under the bolt head. Multiple, branched cracking was present in a longitudinal section through the failed end of one bolt, typical of hydrogen-assisted SCC in hardened steels. Chlorides were detected within the cracks and on the fracture surface. The failed bolts were replaced with 17-4 PH stainless steel bolts (Condition H 1150M) having a hardness of 22 HRC.
Book Chapter
Hydrogen-Assisted Stress Cracking of Carburized and Zinc Plated SAE Grade 8 Wheel Studs
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001383
EISBN: 978-1-62708-215-0
... a nearby cathodic region between the zinc-plated threads and steel core at the tip of the thread root crack. A diagram depicting the condition of a cracked, zinc-plated thread root under stress in a corrosive medium is shown in Fig. 8 . Hydrogen-assisted stress cracking can then occur from the cracked...
Abstract
Several case-hardened and zinc-plated carbon-manganese steel wheel studs fractured in a brittle manner after very limited service life. The fracture surfaces of both front and rear studs showed no sign of fatigue beach marks or deformation in the form of shear lips that would indicate either a fatigue mechanism or ductile overload failure. SEM analysis revealed that the mode of fracture was intergranular decohesion, which indicates an environmental influence in the fracture mechanism. The primary fracture initiated at a thread root and propagated by environmentally-assisted slow crack growth until final fracture. The natural stress concentration at the thread root, when tightened to the required clamp load concomitant with the presence of cracks in the carburized case, was sufficient to exceed the critical stress intensity for hydrogen-assisted stress cracking (HASC). The zinc plating exacerbated the situation by providing a strong local corrosion cell in the form of a sacrificial anode region adjacent to the cracked thread. The enhanced generation of hydrogen in a corrosive environment subsequently lead to HASC of the wheel studs.
Book Chapter
Failure of a Stainless Steel Black Liquor Feed Pipe
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001564
EISBN: 978-1-62708-230-3
... developed cracks on the inside surface coincident with an external support gusset. The cracks initiated at wide corrosion grooves. The early stages were corrosion-assisted fatigue cracks. The cracks initiated at the corrosion grooves and propagated as transgranular SCC with characteristic branching...
Abstract
An 8 in. diam stainless steel black liquor feed pipe to a carbon steel digester had failed within one year of service. The material was type 316 molybdenum-containing austenitic stainless steel. The service environment was alkaline black liquor at 175 deg C (350 deg F). The pipe had developed cracks on the inside surface coincident with an external support gusset. The cracks initiated at wide corrosion grooves. The early stages were corrosion-assisted fatigue cracks. The cracks initiated at the corrosion grooves and propagated as transgranular SCC with characteristic branching. Evaluation indicated the cracks were localized in an area of high cyclic stresses as a consequence of geometrical constraints on the piping and unsupported cantilever loads. No cracks were found elsewhere in the pipe. In the absence of highly localized service stresses (exceeding yield strength of the material), the corrosion grooving and subsequent SCC would not have occurred in this service environment. The pipe support system was modified with additional gussets to reduce the magnitude of cyclic stresses at the critical areas. The modification was apparently successful.
Book Chapter
Effects of Prior Processing on the Service Life of an 18% Nickel Maraging Steel Helicopter Landing Mount
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during...
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
Book Chapter
An Environmentally Assisted Cracking Evaluation of UNS C64200 (Al–Si–Bronze) and UNS C63200 (Ni–Al–Bronze)
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001789
EISBN: 978-1-62708-241-9
... thresholds for environmentally assisted cracking. Al-Si bronze was found to be susceptible to subcritical intergranular cracking in air and seawater, whereas Ni-Al bronze was unaffected. Both materials, however, are susceptible to cracking in the presence of ammonia, although the subcritical crack growth...
Abstract
An air system on a marine platform unexpectedly shut down due to the failure of a union nut, which led to an investigation to quantify the material limitations of bronze alloys in corrosive marine environments. The study focused on two alloys: Al-Si bronze, as used in the failed component, and Ni-Al bronze, which has a history of success in naval applications. Material samples were examined using chemical analysis, SEM imaging, and corrosion testing. Investigators also analyzed precracked tension specimens, exposing them to different conditions to quantify stress intensity thresholds for environmentally assisted cracking. Al-Si bronze was found to be susceptible to subcritical intergranular cracking in air and seawater, whereas Ni-Al bronze was unaffected. Both materials, however, are susceptible to cracking in the presence of ammonia, although the subcritical crack growth rate is two to three times higher in Ni-Al bronze. Based on the results of this work, the likelihood of subcritical cracking under various conditions can be reasonably estimated, which, in the case at hand, proved to be quite high.
Book Chapter
Abrasive Wear Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Book Chapter
Microstructural Analysis of Failure of a Stainless Steel Bone Plate Implant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001579
EISBN: 978-1-62708-226-6
... Abstract Stainless steel is frequently used for bone fracture fixation in spite of its sensitivity to pitting and cracking in chloride containing environments (such as organic fluids) and its susceptibility to fatigue and corrosion fatigue. A 316L stainless steel plate implant used for fixation...
Abstract
Stainless steel is frequently used for bone fracture fixation in spite of its sensitivity to pitting and cracking in chloride containing environments (such as organic fluids) and its susceptibility to fatigue and corrosion fatigue. A 316L stainless steel plate implant used for fixation of a femoral fracture failed after only 16 days of service and before bone callus formation had occurred. The steel used for the implant met the requirements of ASTM Standard F138 but did contain a silica-alumina inclusion that served as the initiation point for a fatigue/corrosion fatigue fracture. The fracture originated as a consequence of stress intensification at the edge of a screw hole located just above the bone fracture; several fatigue cracks were also observed on the opposite side of the screw hole edge. The crack propagated in a brittle-like fashion after a limited number of cycles under unilateral bending. The bending loads were presumably a consequence of leg oscillation during assisted perambulation.
Book Chapter
Failed Mixer Pivot Support of An Army Attack Helicopter
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001293
EISBN: 978-1-62708-215-0
... at the radius and the high notch sensitivity of the material. The failure mechanism was hydrogen-assisted and was most likely a combination of stress-corrosion cracking and corrosion fatigue. Recommendations were to improve the inspection criteria of the component in service and the material used in fabrication...
Abstract
A forged, cadmium-plated electroslag remelt (ESR) 4340 steel mixer pivot support of the rotor support assembly located on an Army attack helicopter was found to be broken in two pieces during an inspection. Visual inspection of the failed part revealed significant wear on surfaces that contacted the bushing and areas at the machined radius where the cadmium coating had been damaged, which allowed corrosion pitting to occur. Optical microscopy showed that the crack origin was located at the machined radius within a region that was severely pitted. Electron microscopy revealed that most of the fracture surface failed in an intergranular fashion. Energy dispersive spectroscopy determined that deposits of sand, corrosion and salts were found within the pits. The failure started by hydrogen charging as a result of corrosion, and was aggravated by the stress concentration effects of pitting at the radius and the high notch sensitivity of the material. The failure mechanism was hydrogen-assisted and was most likely a combination of stress-corrosion cracking and corrosion fatigue. Recommendations were to improve the inspection criteria of the component in service and the material used in fabrication.
Book Chapter
Failure of a Stainless Steel Power Boiler Steam Desuperheater
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001566
EISBN: 978-1-62708-229-7
..., and the cracks had penetrated through the wall thickness in several areas. The fracture surfaces had distinct beach markings delineating the crack front, representative of crack propagation stages. The cracks were transgranular and, unlike classical corrosion-fatigue cracks, exhibited branching, characteristic...
Abstract
A desuperheater diffuser nozzle in the steam supply line failed within nine months of service in an 8.25 MN/sq m (1200 psig) steam line. The nozzle was an austenitic stainless steel casting in conformance to material. The nozzle had numerous cracks on the inside and outside surfaces, and the cracks had penetrated through the wall thickness in several areas. The fracture surfaces had distinct beach markings delineating the crack front, representative of crack propagation stages. The cracks were transgranular and, unlike classical corrosion-fatigue cracks, exhibited branching, characteristic of chloride-induced SCC in austenitic stainless steels. The failure resulted from chloride-induced SCC, possibly assisted by cyclic stress. The recommendation for alternate material for the desuperheater nozzle included nickel base alloys per ASTM B 564, Grades 600 or 800 titanium alloy per ASTM B 367, Grades C3/C4, or ferritic stainless steel alloy per ASTM 182, Grade FXM27.
Book Chapter
Investigation of a Failed Stainless Steel Spindle Assembly
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... micrograph of linear attack. a) Longitudinal slot (×450). b) Transverse slot (×350). Discussion Failure resulted from corrosion assisted cracking of the excessively torqued assembly, and progressive crack extension up to the point at which brittle fracture of the remaining stud cross-section...
Abstract
This paper describes the metallurgical investigation of a broken spindle used to attach an antenna to the mast of a naval vessel. Visual inspections of both failed and intact fastener assemblies were carried out both on-board ship and in the laboratory followed by metallographic and fractographic examinations. Simulations were also performed on stressed material in a suitable environment to assess the relative importance of postulated failure mechanisms. Factors contributing to this failure including assembly procedures and applied preloads, service loading and environment, and material selection and specification. The discussion considers whether this failure was an isolated incident or is likely to be a fleet-wide problem, and suggests ways to prevent reoccurrence.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001523
EISBN: 978-1-62708-227-3
... failure; fatigue fracture; and, environmentally-assisted cracking. Testing indicated overload failure was the cause. Remedial actions were taken to improve the fracture properties of the deck socket. A modified manufacturing process was developed involving milling and cutting instead of coining to round...
Abstract
In TAKR 300 (Bob Hope) Class transport ships, the builder observed cracking of steel cloverleaf vehicle tie-down deck sockets following installation. Sockets were made from AH36 steel plate by flame cutting and cold coining, then submerged-arc welded to the shop deck. Cracks initiated from the tip of the cloverleaf pattern in >300 cases aboard several cargo vessels in various stages of construction. Consultants who analyzed the situation concluded that the problem may have been corrosion and hydrogen embrittlement. Three possible mechanisms of failure were considered: overload failure; fatigue fracture; and, environmentally-assisted cracking. Testing indicated overload failure was the cause. Remedial actions were taken to improve the fracture properties of the deck socket. A modified manufacturing process was developed involving milling and cutting instead of coining to round the comers of the flame-cut cloverleaf lobe. This new manufacturing process solved the problem.
Book Chapter
Fatigue Fracture of Aluminum Wires in High-Voltage Electrical Cables in Alaska
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001124
EISBN: 978-1-62708-214-3
... assisted fatigue crack initiation/propagation. The failure was attributed to the departure of conductor quality from the requirements of ASTM B 398 and B 399, which specify that “no joints shall be made during final drawing or in the finished wire” and that the joints should not be closer than 15 m (50 ft...
Abstract
Several wires in aluminum conductor cables fractured within 5 to 8 years of, service in Alaskan tundra. The cables were comprised of 19-wire strands; the wires were aluminum alloy 6201-T81. Visual and metallographic examinations of the cold-upset pressure weld joints in the wires established that the fractures were caused by fatigue loading attributable to wind/thermal factors at the joints. The grain flow at the joints was transverse to the wire axis, rendering the notches of the joints sensitive to fatigue loading. An additional contributory factor was intergranular corrosion, which assisted fatigue crack initiation/propagation. The failure was attributed to the departure of conductor quality from the requirements of ASTM B 398 and B 399, which specify that “no joints shall be made during final drawing or in the finished wire” and that the joints should not be closer than 15 m (50 ft). The failed cable did not meet either criterion. It was recommended that the replacement cable be inspected for strict compliance to ASTM requirements.
Book Chapter
A Fracture Mechanics Based Failure Analysis of a Cold Service Pressure Vessel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001137
EISBN: 978-1-62708-228-0
... fatigue striations manifested by SEM, that the vessel was subject to significant fatigue cracking, which was probably corrosion assisted. From COD measurements at the operating temperature of -130 deg C (-202 deg F), and a finite stress analysis, a fracture mechanics evaluation using BS PD6493 yielded...
Abstract
Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed in service some years previously. The failed pressure vessel, with a diam of 2.5 m and several meters tall, had been made of 12 mm thick IZETT steel plate of the same type and heat treatment as used in the earlier fitness-for-purpose already measured. Examination of the fracture surfaces suggested, from fatigue striations manifested by SEM, that the vessel was subject to significant fatigue cracking, which was probably corrosion assisted. From COD measurements at the operating temperature of -130 deg C (-202 deg F), and a finite stress analysis, a fracture mechanics evaluation using BS PD6493 yielded realistic critical flaw sizes (in the range 51 to 150 mm). These sizes were consistent with the limited fracture surface observations and such flaws could well have been present in the vessel dome prior to catastrophic failure. For similar pressure vessels, an inspection program based on a leak-before-break philosophy was consequently regarded as acceptable.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001907
EISBN: 978-1-62708-217-4
.... Second, macroetching showed that the bolts has been machined from stock rather than forged, and the threads cut rather than rolled. It was also determined that hydrogen-assisted stress-corrosion cracking also played a part in the failure of the high-strength bolts. Missile launchers Attachment...
Abstract
Aircraft missile launcher attachment bolts fabricated from cadmium-coated Hy-tuf steel were found broken. Subsequent analysis of the broken bolts indicated three causes of failure. First, the bolts had been carburized, which was not in conformance with the heat treating requirements. Second, macroetching showed that the bolts has been machined from stock rather than forged, and the threads cut rather than rolled. It was also determined that hydrogen-assisted stress-corrosion cracking also played a part in the failure of the high-strength bolts.
Image
4137 steel bolts (hardness: 42 HRC) that failed by hydrogen-assisted SCC ca...
Available to Purchase
in Hydrogen-Assisted Stress-Corrosion Cracking Failure of Four AISI 4137 Steel Bolts
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Book Chapter
Corrosion-Fatigue Failure of U-Bend Heat-Exchanger Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048728
EISBN: 978-1-62708-228-0
... was revealed by metallography which was typical of cracking by corrosion fatigue mechanism. Corrosion deposits on both the inside- and outside-diam surfaces were found in the tubes. The presence of copper, zinc, iron, and small amounts of chloride, sulfur, silicon, tin, and manganese was revealed by energy...
Abstract
After being in service for ten years, two admiralty brass heat-exchanger tubes from a cooler in a refinery catalytic reforming unit cracked circumferentially in the area of U-bends. A blunt transgranular cracking with minimal branching propagating from the inside surface of the tube was revealed by metallography which was typical of cracking by corrosion fatigue mechanism. Corrosion deposits on both the inside- and outside-diam surfaces were found in the tubes. The presence of copper, zinc, iron, and small amounts of chloride, sulfur, silicon, tin, and manganese was revealed by energy-dispersive analysis of the deposits. It was interpreted by the hardness values (higher than typical for annealed copper tubing) that the tubes may not have been annealed after the U-bends were formed and thus the role of residual stresses in the crack was revealed. It was concluded that the tubes failed by corrosion fatigue initiated by pitting at the inside-diam surface. The tubes were recommended to be annealed after bending to reduce residual stresses from the bending operation to an acceptable level.
Book Chapter
Cause and Prevention of Fatigue Failures in Boiler Tubing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001569
EISBN: 978-1-62708-229-7
... in operation and maintenance/repair may increase a part's exposure and likelihood of failure during the part's life. Corrosion may assist the fatigue process to various degrees. Generally, it lowers the threshold stress for fatigue. It may act to roughen the surface of a part producing localized stress...
Abstract
This paper reviews several fatigue failures from the waterwall, superheater, and economizer portions of the boiler, their causes and how they were mitigated and monitored. Some cases required simple field modifications by cutting or welding, repair of existing controls, and/or changes in maintenance. Nondestructive inspections by visual, magnetic particle, ultrasonic, and radiographic methods for detecting and monitoring damage are discussed. These failures are presented to provide hindsight that will help others in increasing the success rate for anticipating and analyzing the remaining life of other units.
Book Chapter
Electron Fractography Pinpoints Cause of Fatigue Fracture
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001537
EISBN: 978-1-62708-234-1
... corrosion mechanism. It probably started at the root of the straightening crack and then extended into the flange. Though a fatigue mechanism was operative in Region 3, it was not the cause of the large crack. Rather, it merely assisted crack growth by the stress corrosion mechanism. Region 4, which...
Abstract
After completing a fatigue test of an aluminum alloy component machined from a 7079-T6 forging, technicians noted a 5 in. crack which ran longitudinally above and through the flange. When the fracture face was examined by light microscopy, observers could not ascertain the exact mode of fracture. Electron fractography revealed that five different modes of crack growth were operative as the part failed. Region 1 was a shallow zone (about 0.002 in. at its deepest) of dimpled structure typical of an overload failure. Region 2 was a zone that grew by a stress corrosion mechanism. Through a fatigue mechanism was operative in Region 3, it was not the cause of the large crack. Region 4, which covered 50% of the fracture area, developed mainly by stress corrosion. This zone gradually changed into the combination of intergranular and transgranular overload in Region 5, which covered approximately the remaining 50% of the fracture. Apparently, after stress corrosion moved halfway through, the part failed by overload. This failure analysis proved that a crack, originally thought to be a fatigue failure, was actually a stress corrosion crack.
Book Chapter
Use of EPMA to Identify Microconstituents in a Failed Extrusion Press
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0045903
EISBN: 978-1-62708-223-5
..., the failure appeared to have resulted from corrosion-assisted fatigue, and the inclusion concentration in the fracture-initiated area indicated that the chemical-composition limits for sulfur and manganese would have greatly exceeded material specifications. A higher quality steel was recommended...
Abstract
A 230 mm (9 in.) thick casing, fabricated from ASTM 235-55 low-carbon steel, of a 450 Mg (500 ton) extrusion press failed after 27 years of service. Initial visual examination revealed an area that exhibited multiple origins and classic beach marks radiating out approximately 75 mm (3 in.) from the origin along the wall of a hydraulic-oil bleed hole. Investigation with a SEM showed corrosion pits along the bleed hole wall, but oxidation and corrosion prevented review of microfractographic details. Vacuum epoxy encapsulation, sectioning of the bleed hole, and metallographic examination revealed a basic microstructure of pearlite and ferrite with bands of slightly finer pearlite, with a large concentration of inclusion stringers in the area of the fracture origin. Further investigation using an energy-dispersive x-ray analyzer showed high concentrations of sulfur and manganese. Thus, the failure appeared to have resulted from corrosion-assisted fatigue, and the inclusion concentration in the fracture-initiated area indicated that the chemical-composition limits for sulfur and manganese would have greatly exceeded material specifications. A higher quality steel was recommended for the replacement unit to lessen the possibility of such gross inclusion segregation and to improve the fracture toughness of the cylinder.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001115
EISBN: 978-1-62708-214-3
... with the pulling operation and thus parted. It is possible that the pipe suffered from environmentally assisted cracking, such as chloride stress-corrosion cracking or sulfide stress cracking. Initiation of multiple cracks and separation along grain boundaries often point to such failure mechanisms. However...
Abstract
During a work over of an oil well, the 9% Ni steel production tubing parted three times as it was being pulled from the well. The tubing had performed satisfactorily for more than 30 years in the well A representative failure, a circumferential fracture in a connection, was analyzed. Reported to be a hydril CS connection, the pin end parted near the last threads. The external surface exhibited mechanical damage marks from the fishing operation. No signs of external corrosion or damage were detected. Visual surface examination revealed shear lips at the outside pipe, indicating that the fracture initiated at the inside surface and grew across the wall. Longitudinal cross sections revealed heavy corrosion damage to the inside pipe surface. Metallographic examination indicated that the tubing failed as a result of severe weakening from internal corrosion. Gray-colored corrosion deposits, which penetrated the pipe throughout the grain boundaries of the material and concentrated in the matrix in a layer near the inside surface of the pipe, were observed. The presence of H2S in the produced fluids and the appearance of the gray deposit indicated that the tube suffered H2S corrosion. Chemical analysis of the base metal and corrosion deposits did not detect iron or nickel sulfides, however Replacement of the remaining pipe strings according to a scheduled program was recommended. Because 9% Ni steel was not available, 13% Cr martensitic stainless steel was recommended as a replacement.
1