Skip Nav Destination
Close Modal
Search Results for
corrosion test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 613 Search Results for
corrosion test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure Analysis: Sulfide Stress Corrosion Cracking and Hydrogen-Induced Cracking of A216-WCC Wellhead Flow Control Valve Body
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 10 Surface of fractured steels, after corrosion testing according to NACE TM 0177-96 method “A” standard in 5.0% NaCl + 0.5% CH 3 COOH at T = 23 °C and pH 3.5. The applied stress was 100% of the YS of the steels ( a ) A216-WCC, ( b ) A217-WC9
More
Image
in Failure Analysis: Sulfide Stress Corrosion Cracking and Hydrogen-Induced Cracking of A216-WCC Wellhead Flow Control Valve Body
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 11 Transverse sections of steels showing SSC cracks, after corrosion testing according to NACE TM0177-96 method “A” standard in 5.0% NaCl + 0.5% CH 3 COOH at T = 23 °C and pH 3.5. The applied stress was 100% of the YS of the steels ( a ) A216-WCC, after 4 h of testing, ( b ) A217-WC9
More
Image
in Failure of a Stainless Steel Tank Used for Storage of Heavy Water/Helium
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001070
EISBN: 978-1-62708-214-3
... Abstract Although field corrosion tests had indicated that type 316L stainless steel would be a suitable material for neutralization tanks, the vessels suffered severe corrosion when placed in service. Welded coupons of type 316L had been tested along with similar Alloy 20Cb® (UNS NO8020...
Abstract
Although field corrosion tests had indicated that type 316L stainless steel would be a suitable material for neutralization tanks, the vessels suffered severe corrosion when placed in service. Welded coupons of type 316L had been tested along with similar Alloy 20Cb® (UNS NO8020) specimens in a lead-lined tank equipped with copper coils that had served in this function prior to construction of the new tanks. Both materials exhibited virtually no corrosion and no preferential weld attack. Type 316L was selected for the project. The subsequent corrosion was the result of the borderline passivity of type 316L in hot dilute sulfuric acid (about 0.1%). Inaccuracy of the testing was attributed to the presence of cupric ions in the lead-lined vessel fluids, which had been released by corrosion of the copper coils. Careful control of both temperature and pH was recommended to reduce the corrosion to an acceptable limit.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048620
EISBN: 978-1-62708-225-9
... in the nut to promote this type of failure by normal installation because there was no evidence of excessive tightening of the nut. Corrosion testing of the nuts indicated that the fractured nut was highly susceptible to intergranular corrosion because of either a deficiency in magnesium content or excessive...
Abstract
Two nuts were used to secure the water-supply pipes to the threaded connections on hot-water and cold-water taps. The nut used on the cold-water tap fractured about one week after installation. Examination of the fracture surfaces of the coldwater nut did not reveal any obvious defects to account for the fracture, but there were indications of excessive porosity in the nut. The fracture had occurred through the root of the first thread that was adjacent to the flange of the tap. It was found that the nut from the cold-water tap failed by SCC. Apparently, sufficient stress was developed in the nut to promote this type of failure by normal installation because there was no evidence of excessive tightening of the nut. Corrosion testing of the nuts indicated that the fractured nut was highly susceptible to intergranular corrosion because of either a deficiency in magnesium content or excessive impurities, such as lead, tin, or cadmium. This composition problem with zinc alloys was recognized many years ago, and particular attention has been directed toward ensuring that high-purity zinc is used. This corrective measure reportedly resulted in virtual elimination of this type of defect.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001022
EISBN: 978-1-62708-214-3
... grain-boundary attack. 305×. Fig. 16 Typical stress-corrosion crack in part 2. 315×. Abstract Two complete aircraft undercarriage-leg 2014 aluminum alloy forgings and a number of sectional ends that exhibited cracks during nondestructive testing were examined to determine the extent...
Abstract
Two complete aircraft undercarriage-leg 2014 aluminum alloy forgings and a number of sectional ends that exhibited cracks during nondestructive testing were examined to determine the extent of damage and the type of cracking. Cracks were primarily confined to the diaphragm and adjoining wall between the steel sleeve and the steel diaphragm washer. Metallographic analysis and accelerated corrosion tests showed that the cracks had originated as stress-corrosion failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091350
EISBN: 978-1-62708-227-3
... temperatures of 66 to 180 deg C (150 to 350 deg F), an alloy such as 5083 can become susceptible to intergranular corrosion. Investigation (visual inspection, corrosion testing, SEM images) supported the conclusion that the cracks occurred because during exposures to chloride solutions like seawater, galvanic...
Abstract
Cracks occurred in a new ship hull after only three months in service. It was noted that the 5xxx series of aluminum alloys are often selected for weldability and are generally very resistant to corrosion. However, if the material has prolonged exposure at slightly elevated temperatures of 66 to 180 deg C (150 to 350 deg F), an alloy such as 5083 can become susceptible to intergranular corrosion. Investigation (visual inspection, corrosion testing, SEM images) supported the conclusion that the cracks occurred because during exposures to chloride solutions like seawater, galvanic couples formed between precipitates and the alloy matrix, leading to severe intergranular attack. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001349
EISBN: 978-1-62708-215-0
... 0.01 Phosphorus 0.045 0.045 0.045 Fig. 5 Macrograph of the specimen after intergranular corrosion testing. 4.74× Fig. 6 Modified dished end design Fig. 1 Schematic of heavy water/helium storage tank. Dimensions given in millimeters Fig. 2 Weld details...
Abstract
The dished ends of a heavy water/helium storage tank manufactured from 8 mm (0.3 in.) thick type 304 stainless plate leaked during hydrotesting. Repeated attempts at repair welding did not alleviate the problem. Examination of samples from one dished end revealed that the cracking was confined to the heat affected zone (HAZ) surrounding circumferential welds and, to a lesser extent, radial welds that were part of the original construction. Most of the cracks initiated and propagated from the inside surface of the dished ends. Microstructures of the base metal, HAZ, and weld metal indicated severe sensitization in the HAZ due to high heat input during welding. An intergranular corrosion test confirmed the observations. The severe sensitization was coupled with residual stresses and exposure of the assembly to a coastal atmosphere during storage prior to installation. This combination of factors resulted in failure by stress-corrosion cracking. Implementation of a new repair procedure was recommended. Repairs were successfully made using the new procedure, and all cracks in the weld repair zones were eliminated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001547
EISBN: 978-1-62708-225-9
... concentration depended on end hook bend sharpness. Also, interference fits are to be avoided in the end hooks of small springs. Additionally, a need for careful consideration of the stress-corrosion properties of candidate materials for spring applications has been demonstrated by stress-corrosion test results...
Abstract
Life testing of cyclic loaded, miniature extension springs made of 17-7 PH stainless steel wire and AISI 302 Condition B stainless steel wire has shown end hook configuration to be a major source of weakness. To avoid cracking and subsequent fatigue failure, it was found that stress concentration depended on end hook bend sharpness. Also, interference fits are to be avoided in the end hooks of small springs. Additionally, a need for careful consideration of the stress-corrosion properties of candidate materials for spring applications has been demonstrated by stress-corrosion test results for 17-7 PH CH900 and for Custom 455 CH850 stainless steels. Laboratory testing of these two materials in the form of compression springs confirmed the superiority of the 17-7 PH over Custom 455.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048814
EISBN: 978-1-62708-229-7
... by series of controlled crack-propagation-rate stress-corrosion tests that A302, grade B, steel was susceptible to transgranular stress-corrosion attack in constant extension rate testing with as low as 1 ppm chloride present. It was recommended to maintain the coolant environment low in oxygen and chloride...
Abstract
A nuclear steam-generator vessel constructed of 100-mm thick SA302, grade B, steel was found to have a small leak. The leak originated in the circumferential closure weld joining the transition cone to the upper shell. The welds had been fabricated from the outside by the submerged arc process with a backing strip. The backing was back gouged off, and the weld was completed from the inside with E8018-C3 electrodes by the shielded metal arc process. Striations of the type normally associated with progressive or fatigue-type failures including beach marks that allowed tracing the origin of the fracture to the pits on the inner surface of the vessel were revealed. Copper deposits with zinc were revealed by EDS examination of discolorations. Pitting was revealed to have been caused by poor oxygen control in the steam generators and release of chloride into the steam generators. It was concluded by series of controlled crack-propagation-rate stress-corrosion tests that A302, grade B, steel was susceptible to transgranular stress-corrosion attack in constant extension rate testing with as low as 1 ppm chloride present. It was recommended to maintain the coolant environment low in oxygen and chloride. Copper ions in solution should be eliminated or minimized.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001789
EISBN: 978-1-62708-241-9
... of success in naval applications. Material samples were examined using chemical analysis, SEM imaging, and corrosion testing. Investigators also analyzed precracked tension specimens, exposing them to different conditions to quantify stress intensity thresholds for environmentally assisted cracking. Al-Si...
Abstract
An air system on a marine platform unexpectedly shut down due to the failure of a union nut, which led to an investigation to quantify the material limitations of bronze alloys in corrosive marine environments. The study focused on two alloys: Al-Si bronze, as used in the failed component, and Ni-Al bronze, which has a history of success in naval applications. Material samples were examined using chemical analysis, SEM imaging, and corrosion testing. Investigators also analyzed precracked tension specimens, exposing them to different conditions to quantify stress intensity thresholds for environmentally assisted cracking. Al-Si bronze was found to be susceptible to subcritical intergranular cracking in air and seawater, whereas Ni-Al bronze was unaffected. Both materials, however, are susceptible to cracking in the presence of ammonia, although the subcritical crack growth rate is two to three times higher in Ni-Al bronze. Based on the results of this work, the likelihood of subcritical cracking under various conditions can be reasonably estimated, which, in the case at hand, proved to be quite high.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048607
EISBN: 978-1-62708-225-9
... disclosed a copper-colored residue adhering to the threads. This residue was from the antiseizure compound that had been applied during assembly. Accelerated Corrosion Testing Laboratory corrosion tests were conducted on four bolts taken from stock. The purpose of the tests was to determine...
Abstract
Stainless steel bolts broke after short-term exposure in boiler feed-pump applications. Specifications required that the bolts be made of a 12% Cr high-strength steel with a composition conforming to that of AISI type 410 stainless steel. Several bolts from three different installations were examined. It was found that fracture of the bolts was by intergranular stress corrosion. A metallic copper-containing antiseizure compound on the bolts in a corrosive medium set up an electro-chemical cell that produced trenchlike fissures or pits for fracture initiation. Because the bolts were not subjected to cyclic loading, fatigue or corrosion fatigue was not possible. To prevent reoccurrence, bolts were required to conform to the specified chemical composition. The hardness range for the bolts was changed from 35 to 45 HRC to 18 to 24 HRC. Petroleum jelly was used as an antiseizure lubricant in place of the copper-containing compound. As a result of these changes, bolt life was increased to more than three years.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
...) for fracture in stress corrosion tests Table 7 Test time (h) for fracture in stress corrosion tests Applied stress (% yield strength of steel) Steel 100 70 A216-WCC 4 223 A217-WC9 12 467 Fig. 9 A216 and A217 polarization in H 2 S-saturated NACE TM0177 “A” solution (5.0...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001348
EISBN: 978-1-62708-215-0
... taken are indicated: 1, intergranular corrosion testing; 2, hardness testing; 3, microscopy; 4, fractography; 5, residual stress measurements; 6, Chemical analysis Fig. 2 SEM fractographs showing mode of fracture at different stages of crack propagation. (a) Close to weld seam. (b) First...
Abstract
Two tanks made of AISI type 304 stainless steel exhibited cracking in the heat-affected zone (HAZ) of the weld that joined the dished end and the shell. The dished ends had been produced by cold deformation. Hardness measurement and simulation tests showed that the deformation was equivalent to a 30% reduction in thickness. Residual stresses were measured at about 135 MPa (20 ksi). The HAZ was found to be sensitized. The tanks had been stored in a coastal atmosphere for about 4 years before installation. The failure was attributed to intergranular stress-corrosion cracking in a sensitized HAZ due to chloride from the environment. Use of low-carbon type AISI 304L was recommended. Minimization of fit-up stresses and covering with polyethylene sheets during storage were also suggested.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091727
EISBN: 978-1-62708-217-4
...-corrosion resulting from contamination during misprocessing of the vessels. However, another vessel underwent a more severe testing procedure and failed catastrophically. Further investigation supported the conclusion that the failure cause was SCC of titanium in methanol. Attack is promoted by crazing...
Abstract
During an acceptance test of the Apollo spacecraft 101 service module prior to delivery, an SPS fuel pressure vessel (SN054) (titanium Ti-6Al-4V, approximately 1.2 m (4 ft) in diam and 3 m (10 ft) long) containing methanol developed cracks adjacent to the welds. The test was stopped. This acceptance test had been run 38 times on similar pressure vessels without problems. The methanol was a safe-fluid replacement for the storable hypergolic fuels (blend of 50% hydrazine and 50% unsymmetrical dimethyl hydrazine). Investigation (visual inspection and 65X images) showed similarities to stress-corrosion resulting from contamination during misprocessing of the vessels. However, another vessel underwent a more severe testing procedure and failed catastrophically. Further investigation supported the conclusion that the failure cause was SCC of titanium in methanol. Attack is promoted by crazing of the protective oxide film. It was learned that minor changes in the testing procedures could inhibit or accelerate the reaction. Recommendations included replacing the methanol with a suitable alternate fluid. Isopropyl alcohol was chosen after considerable testing. This incident further resulted in the imposition of a control specification (MF0004-018) for all fluids that contact titanium for existing and future space designs.
Image
in Stress-Corrosion Cracking of a Die-Cast Zinc Alloy Nut
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 1 Die-cast zinc alloy nuts from a water tap. (a) Nut for the cold-water tap that failed by SCC. (b) Mating nut for the hot-water top that shows only isolated areas of corrosion. (c) Unetched section showing metal in the cold-water tap after corrosion testing. 600×
More
Image
Published: 01 December 1993
Fig. 1 Schematic of the helium storage tank. The areas where samples were taken are indicated: 1, intergranular corrosion testing; 2, hardness testing; 3, microscopy; 4, fractography; 5, residual stress measurements; 6, Chemical analysis
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001377
EISBN: 978-1-62708-215-0
... MPa (153 ksi) 900 MPa (130 ksi) Proof stress 930 MPa (135 ksi) 830 MPa (120 ksi) Elongation, % min 8 12 Hardness, Brinell max 425 352 min 330 302 Hardness, HRC max 44 38 min 34 32 Stress-corrosion tests: effect of bolt tension and vendor comparison...
Abstract
Sudden and unexplained bearing cap bolt fractures were experienced with reduced-shank design bolts fabricated from 42 CrMo 4 steel, quenched and tempered to a nominal hardness of 38 to 40 HRC. Fractographic analysis provided evidence favoring stress-corrosion cracking as the operating transgranular fracture failure mechanism. Water containing H7S was subsequently identified as the aggressive environment that precipitated the fractures in the presence of high tensile stress. This environment was generated by the chemical breakdown of the engine oil additive and moisture ingress into the normally sealed bearing cap chamber surrounding the bolt shank. A complete absence of fractures in bolts from one of the two vendors was attributed primarily to surface residual compressive stresses produced on the bolt shank by a finish machining operation after heat treatment. Shot cleaning, with fine cast shot, produced a surface residual compressive stress, which eliminated stress-corrosion fractures under severe laboratory conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001674
EISBN: 978-1-62708-234-1
... Abstract Accelerated aging tests on detonator assemblies, to verify the compatibility of gold bridgewire and Pd-In-Sn solder with the intended explosives, revealed an unusual form of corrosion. The tests, conducted at 74 deg C (165 deg F) and 54 deg C (130 deg F), indicated a preferential...
Abstract
Accelerated aging tests on detonator assemblies, to verify the compatibility of gold bridgewire and Pd-In-Sn solder with the intended explosives, revealed an unusual form of corrosion. The tests, conducted at 74 deg C (165 deg F) and 54 deg C (130 deg F), indicated a preferential attack of the gold. To investigate the problem, a matrix of test units was produced and analyzed. Scanning electron microscopy, EDX analysis, and x-ray diffraction techniques were used to determine the extent of the corrosion and identify the corrosion products. The results indicated that the preferential attack of the gold was due to HCN formed by decomposition of the explosive powder at high temperatures. Other associated reactions were also observed including the subsequent attack of the solder by the gold corrosion product and degradation of the plastic header.
Image
in Failure of Nickel-Aluminum-Bronze Hydraulic Couplings, with Comments on General Procedures for Failure Analysis
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 15 Stress-corrosion fracture in a Cu-30Zn brass tested in water containing sulfur dioxide showing crack-arrest markings due to the discontinuous nature of crack propagation 10
More
1