Skip Nav Destination
Close Modal
Search Results for
corrosion failures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1236 Search Results for
corrosion failures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials. aerospace industry automotive industry chemical corrosion chemical...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
... Abstract Gas turbines and other types of combustion turbomachinery are susceptible to hot corrosion at elevated temperatures. Two such cases resulting in the failure of a gas turbine component were investigated to learn more about the hot corrosion process and the underlying failure mechanisms...
Abstract
Gas turbines and other types of combustion turbomachinery are susceptible to hot corrosion at elevated temperatures. Two such cases resulting in the failure of a gas turbine component were investigated to learn more about the hot corrosion process and the underlying failure mechanisms. Each component was analyzed using optical and scanning electron microscopy, energy dispersive spectroscopy, mechanical testing, and nondestructive techniques. The results of the investigation provide insights on the influence of temperature, composition, and microstructure and the contributing effects of high-temperature oxidation on the hot corrosion process. Preventative measures are also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... Abstract This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... coatings that improve performance of superalloy. diffusion gas turbines high-temperature coatings high-temperature corrosion interdiffusion oxidation superalloys WHEN CORROSION FAILURES OCCUR at high temperatures (300 to 1700 °C, or 570 to 3090 °F), the unscheduled outages result in loss...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001904
EISBN: 978-1-62708-217-4
... components Alignment Bolts Fatigue life Helicopters Magnetic particle testing Shafts (power) 18Ni Steel eyebolt Corrosion fatigue Pitting corrosion The first of two examples demonstrating failures caused by corrosion concerns a steel eyebolt which failed by fatigue ( Figs. 1 , 2 , 3...
Abstract
A steel eyebolt which attached a rear lift strut to the right wing of a helicopter failed by fatigue. As a contributing factor, thread cutting produced sharp notches at thread roots, reducing fatigue life. Also, design fatigue life may have been exceeded as the part was in use about 10,000 h. Cumulative damage resulting from a previous accident could have occurred too. Because of this accident, inspectors were instructed to examine threaded zones of eyebolts by magnetic particle inspection after every 100 h in service. A maraging steel drive shaft of a helicopter also failed because of corrosion (pits), and continuous abnormal misalignment as well. Corrosion probably developed from moisture and water droplets on shaft diaphragm profiles. Improved diaphragm pack seals and coatings made by an electron-coat process (such as a Sermetal finish) are now used in new shafts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001163
EISBN: 978-1-62708-234-1
.... The virtually undeformed cleavage fracture, which is generally free from corrosion products, is typical of stress corrosion cracking 1 . The mechanism of stress corrosion cracking has not yet been completely explained. However, in spite of the various theories, effective measures against SCC failure...
Abstract
Practical examples of stress-corrosion cracking (SCC) and methods for its prevention were presented. Cracks in chloride-sensitive austenitic steels were very branched and transcrystalline. Etched cross sections of molybdenum-free samples showed chloride-induced cracks running out of the pitted areas. Alternatively polishing and etching micro-sections for viewing at high magnification made crack detail more visible. Optical and scanning electron micrographs showed cracking in austenitic cast steel and cast iron due to both internal tensile and critical residual stresses; the latter causes flake-like spalling. Measures to prevent SCC include stress reduction, use of austenitic steels or nickel alloys not susceptible to grain boundary attack, use of ferritic chromium steels, surface slag removal, control of temperature and chloride concentration, and cathodic protection.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... sensitization stress-corrosion cracking sulfidation thermal barrier coatings WHEN FAILURES OCCUR, the unscheduled outages result in loss of reliability and increased economic costs. A failure investigation can determine the primary cause of material, component, or system degradation. Based...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001319
EISBN: 978-1-62708-215-0
... Selected Reference • Warke W. R. , Stress-Corrosion Cracking , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 823 – 860 10.31399/asm.hb.v11.a0003553 Handbook of Case Histories in Failure Analysis, Volume 2 Copyright © 1993 ASM International®...
Abstract
Several type 304L stainless steel dished ends used in the fabrication of cylindrical vessels developed extensive cracking during storage. All of the dished ends had been procured from a single manufacturer and belonged to the same batch. When examined visually, several rust marks were observed, indicating contamination by rusted carbon steel particles. Liquid penetrant testing was used to determine the extent of the cracks, and in situ metallographic analysis was performed over the cracked region. The morphology of the cracks was indicative of transgranular stress-corrosion cracking (TGSCC). Conditions promoting the occurrence of the TGSCC included significant tensile stresses on the inside of the dished ends, the presence of surface contamination by iron due to poor handling practice using carbon steel implements, and storage in a coastal environment with an average temperature of 25 to 32 deg C (77 to 90 deg F), an average humidity ranging from 70 to 80%, and an atmospheric NaCl content ranging from 8 to 45 mg/m2 /day. Recommendations preventing further occurrence of the situation were strict avoidance of the use of carbon steel handling implements, strict avoidance of cleaning practices that cause long-term exposure to chlorine-containing cleaning fluid, and solution annealing of the dished ends at 1050 deg C (1920 deg F) for 1 h followed by water quenching to relieve residual stresses.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048698
EISBN: 978-1-62708-228-0
.... Acknowledgments R.J. Franco wishes to acknowledge G.M. Buchheim, Exxon Research & Engineering Company, for his assistance in preparing several of the examples in the source article. Selected Reference Selected Reference • Warke W. R. , Stress-Corrosion Cracking , Failure Analysis...
Abstract
Wet natural gas was dried by being passed through a carbon steel vessel that contained a molecular-sieve drying agent. The drying agent became saturated after several hours in service and was regenerated by a gas that was heated to 290 to 345 deg C in a salt-bath heat exchanger. The tee joint in the piping between the heat exchanger and the sieve bed failed after 12 months. A hole in the tee fitting and a corrosion product on the inner surface of the pitting was revealed by visual examination. Iron sulfide was revealed by chemical analysis of the scale which indicated hydrogen sulfide attack on the carbon steel. The presence of oxygen was indicated by the carbon and sulfur found in the scale on the piping and in the sieves indicated that oxygen combined with moisture produced conditions for attack of hydrogen sulfide on carbon steel. Turbulence with some effect from the coarse grain size was interpreted to have contributed. The piping material was changed from carbon steel to AISI type 316 stainless steel as it is readily weldable and resistant to corrosion by hydrogen sulfide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001702
EISBN: 978-1-62708-219-8
... stirrups were: (a) in an environment that would initiate corrosion from the moment the viaduct was built; or (b) in an environment that needed only a small additional amount of chloride in order for corrosion to be initiated. Either scenario helps explain the early onset of corrosion and premature failure...
Abstract
The Rocky Point Viaduct, located near Port Orford, OR, was replaced after only 40 years of service. A beam from the original viaduct was studied in detail to determine the mechanisms contributing to severe corrosion damage to the structure. Results are presented from the delamination survey, potential and corrosion mapping, concrete chemistry, and concrete physical properties. The major cause of corrosion damage appears to have been the presence of both pre-existing and environmentally-delivered chlorides in the concrete.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046998
EISBN: 978-1-62708-232-7
... with mixed acids, metallographic examination, and chemical analysis) supported the conclusions that the premature failure of the tube by perforation at the hearth level resulted from (1) corrosion caused by sulfur contamination from the refractory cement in contact with the tube and (2) severe local...
Abstract
One of 14 vertical radiant tubes (RA 333 alloy) in a heat-treating furnace failed when a hole about 5 x 12.5 cm (2 x 5 in.) corroded completely through the tube wall. The tube measured 183 cm (72 in.) in length and 8.9 cm (3 in.) in OD and had a wall thickness of about 3 mm (0.120 in.). Failure occurred where the tube passed through the refractory hearth (floor) of the furnace. Although the furnace atmosphere was neutral with respect to the work, it had a carburizing potential relative to the radiant tubes. Analysis (visual inspection, 250x spectroscopic examination of specimens etched with mixed acids, metallographic examination, and chemical analysis) supported the conclusions that the premature failure of the tube by perforation at the hearth level resulted from (1) corrosion caused by sulfur contamination from the refractory cement in contact with the tube and (2) severe local overheating at the same location. Recommendations included replacing all tubes using a low sulfur refractory cement in installation and controlling burner positioning and regulation more closely to avoid excessive heat input at the hearth level.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001326
EISBN: 978-1-62708-215-0
... of uniform corrosion, type 316L stainless steel was chosen for the application. Circumstances Leading to Failure At the power plant site, the thermowells were internally pressurized using a flexible hose and a soap solution. At a pressure level of only 0.69 MPa (0.10 ksi), about 20% of the thermowells...
Abstract
Pressure testing of a batch of AISI type 316L stainless steel thermowells intended for use in a nuclear power-plant resulted in the identification of leakage at the tips in 20% of the parts. Radiography at the tip region of representative thermowells showed linear indications along the axes. SEM examination revealed the presence of longitudinally oriented nonmetallic inclusions that were partly retained and partly dislodged. Electron-dispersive x-ray analysis indicated that the inclusions were composed of CaO. Based on the overall chemistry of the inclusion sites, the source of the CaO was determined to be slag entrapment during the steel making process. It was recommended that the thermowell blanks be ultrasonically tested prior to machining and that the design be modified to make internal pressurization possible.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001068
EISBN: 978-1-62708-214-3
... Reference • Forms of Corrosion , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 761 – 795 10.31399/asm.hb.v11.a0003548 Handbook of Case Histories in Failure Analysis, Volume 1 Copyright © 1992 ASM International® K.A. Esaklul, editor All rights...
Abstract
Four tanks made from type 304L stainless steel were removed from storage. Atmospheric corrosion on the outside of the tanks and pitting and crevice corrosion on the inside were visible. Metallographic examination revealed that the internal corrosion had been caused by crevices related to weld spatter and uneven weld deposit and by service water that had not been drained after hydrostatic testing. External corrosion was attributed to improper passivation. It was recommended that the surfaces be properly passivated and that, before storage, the interiors be rinsed with demineralized water and dried.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001083
EISBN: 978-1-62708-214-3
... to prevent future failures were recommended: changing the impeller composition to a cast stainless steel, or implementing stricter nondestructive evaluation requirements for copper alloy castings. Boilers Sulfide attack C83600 UNS C83600 Intergranular corrosion Casting-related failures...
Abstract
Copper alloy (C83600) impellers from two different feed pumps that supplied water to a 2-year-old boiler failed repeatedly. Examination by various methods indicated that the failures were caused by sulfide attack that concentrated in shrinkage voids in the castings. Two alternatives to prevent future failures were recommended: changing the impeller composition to a cast stainless steel, or implementing stricter nondestructive evaluation requirements for copper alloy castings.
Image
in “On-Load Corrosion” in Tubes of High Pressure Boilers
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in “On-Load Corrosion” in Tubes of High Pressure Boilers
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091208
EISBN: 978-1-62708-220-4
... Abstract A failure of an aboveground storage tank occurred due to external corrosion of the tank floor. The liquid asphalt tank operated at elevated temperatures (approximately 177 deg C, or 350 deg F) and had been in service for six years. Cathodic protection (rectifiers) had been installed...
Abstract
A failure of an aboveground storage tank occurred due to external corrosion of the tank floor. The liquid asphalt tank operated at elevated temperatures (approximately 177 deg C, or 350 deg F) and had been in service for six years. Cathodic protection (rectifiers) had been installed since start-up of the tank operation. It was noted, however, that some operational problems with the rectifier may have interrupted its protection. Investigation (visual inspection, on-site examination and testing, EDS analysis of scale deposits, and MIC testing of the soil) supported the conclusion that corrosion may have been caused by an interruption in cathodic protection. The effectiveness of cathodic protection on established microbial deposits is questionable. Recommendations included ultrasonically testing the tank floor and replacing portions based on the remaining wall thickness. Doubling the wall thickness of the floor plates was also recommended.
1