Skip Nav Destination
Close Modal
Search Results for
corrosion control
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 318 Search Results for
corrosion control
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
...% of the YS of the steels ( a ) A216-WCC, after 4 h of testing, ( b ) A217-WC9, after 12 h of testing Fig. 3 Severe corrosion on the inner surface of the control valve body, ( a ) near the seat ring, ( b ) near the valve’s flange Fig. 4 A cross section of valve body base metal after 3...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Image
in Reaction Control System Oxidizer Pressure Vessels
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Stress-corrosion failure of an Apollo Ti-6Al-4V reaction control system (RCS) pressure vessel due to nitrogen tetroxide. (a) Failed vessel after exposure to pressurized N 2 O 4 for 34 h. (b) Cross section through typical stress-corrosion cracks. 250×
More
Image
in Failure Analysis: Sulfide Stress Corrosion Cracking and Hydrogen-Induced Cracking of A216-WCC Wellhead Flow Control Valve Body
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 Severe corrosion on the inner surface of the control valve body, ( a ) near the seat ring, ( b ) near the valve’s flange
More
Image
Published: 01 January 2002
Fig. 49 Stress-corrosion failure of an Apollo Ti-6Al-4V reaction control system (RCS) pressure vessel due to nitrogen tetroxide. (a) Failed vessel after exposure to pressurized N 2 O 4 for 34 h. (b) Cross section through typical stress-corrosion cracks. 250×
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... Abstract Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001701
EISBN: 978-1-62708-219-8
... by oxygen concentration cells and oxygen-pitting related corrosion. Both types of corrosion are due to the poor quality of the water and the lack of corrosion control in the water system. Water chemistry Water heaters Water pipelines Water treatment ASTM A106 UNS K03006 Crevice corrosion...
Abstract
A closed-loop hot water heating system at a museum in South Carolina was the subject of failure evaluation. The system consisted of plain carbon steel pipes (Schedule 40) made of ASTM A 106 or A 53 (ERW or seamless). The supply and return lines were made of the same materials. The fittings were mechanically threaded assemblies. Temperatures ranged from 150 to 155 deg F (65.6 to 68.3 deg C). Leaks in the system had reportedly initiated immediately after the building had been placed in service. The cause of corrosion inside the steel pipes was attributed to tuberculation caused by oxygen concentration cells and oxygen-pitting related corrosion. Both types of corrosion are due to the poor quality of the water and the lack of corrosion control in the water system.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0006897
EISBN: 978-1-62708-222-8
... higher than that of annealed copper ( Ref 1 ). Reference Reference 1. Uhlig H.H. , Corrosion and Corrosion Control , 2nd ed. , John Wiley & Sons , 1971 , p 151 Selected Reference Selected Reference • Fatigue Failures , Failure Analysis and Prevention , Vol 11 , ASM...
Abstract
The small cable (drop wire) providing service for individual subscribers from the aerial plant is held in place by a clamp made of a tin-coated brass body (attached to the cable) and a copper tail wire loop (attached to a galvanized steel hook or to a porcelain insulator). The tail wire is 2.6 mm (0.102 in.) diam annealed copper, and the clamp assembly must withstand a 2470 N (555 lb) load without breaking or slipping. A number of these clamps, located a few hundred feet from the ocean, have failed. The sharply broken wire indicated to weakening by abrasion. The copper tail wire failures had characteristics generally associated with corrosion fatigue. The broken wires showed multiple transgranular cracks near the failure, originating at the bases of pits. It was diagnosed that the copper tail wire failures were due to corrosion fatigue. The solution to this problem was to change the tail wire material for direct seashore exposure from annealed copper to annealed Monel.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
...-control methods, equipment, and services; cost of labor attributed to corrosion management; cost of use of more expensive materials to lessen corrosion damage; and cost of lost revenue, loss of reliability, and loss of capital due to corrosion deterioration. Only selected industrial sectors were analyzed...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001592
EISBN: 978-1-62708-228-0
... International , Houston, TX , 1995 . 3. NACE Standard RP 0195 , Recommended Practice for Corrosion Control of Sucker Rods by Chemical Treatment , NACE International , Houston, TX , 1995 . 4. API Specification RP11BR , Recommended Practice for Care and Handling of Sucker Rods , 8th ed...
Abstract
Sucker-rod pumps are operating in very aggressive environments in oil well production. The combined effect of a corrosive environment and significant mechanical loads contribute to frequent cases of failure of the rod string during operation. Standards and recommendations have been developed to control and avoid those failures. This study presents various failure cases of sucker rods in different applications. The heat treatment of the steel material and the resulting microstructure are an important factor in the behavior of the sucker rod. A spheroidized microstructure presents a weaker resistance to corrosion affecting the rod life. Non-metallic inclusions are a pitting preferential site leading to fatigue crack initiation. Heterogeneous microstructure as banded martensite and ferrite/pearlite decreases the ductility of the material affecting the fatigue propagation resistance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001545
EISBN: 978-1-62708-236-5
... which transferred heat to complex test sections. Had material substitutions been made on the original premise of countering chloride stress corrosion, almost all of the loop's highly stressed components would have eventually failed. The Need for Corrosion Control Fortunately, preventive...
Abstract
The presence of secondary, branching intergranular stress-corrosion cracking in a type 440C stainless bearing caused the analyst to overlook the real culprit, which was a mechanically-initiated, primary transgranular crack that propagated through the steel's hard chromium carbide. Failure was actually caused by overload. Had the original conclusion been accepted, a relatively exotic alloy would have been specified. In another case, brass heat exchanger tube failure was automatically attributed to attack by an acidic cleaner, and a decision was made to stop using the solution. A more thorough analysis showed failure was caused by tube vibration. In a third case, a type 304 stainless steel bellows in a test loop was thought to have failed because of chloride stress corrosion. The report concluded with a recommendation that carbon steel be used as an alternative bellows material. Caustic, not chloride, stress corrosion was the culprit. Had material substitutions been made on the original premise of countering chloride stress corrosion, most of the loop's highly stressed components would have eventually failed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006900
EISBN: 978-1-62708-225-9
... 316 stainless steel and by eliminating the MoS 2 antiseize compound. Reference Reference 1. Uhlig H.H. , Corrosion and Corrosion Control , 2nd ed. , John Wiley & Sons , 1971 , p 316 Selected Reference Selected Reference • Hydrogen Damage and Embrittlement...
Abstract
Several type 301 half-hard stainless steel clamps used to hold cylindrical galvanized steel covers to galvanized cast iron bases failed in flooded manholes after one to six months of service. Before service, they were treated with antiseize compound containing MoS2. Based on the conditions (the clamp is the cathode of a galvanic cell with zinc) and the brittle nature of the cracks, the failures were diagnosed as hydrogen-stress cracking. Laboratory experiments were conducted to substantiate the above diagnosis and to evaluate the effect of annealing and the hydrogen-stress cracking behavior of type 316 stainless steel. The problem was solved by changing the clamp material from type 301 to type 316 stainless steel and by eliminating the MoS2 antiseize compound.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091291
EISBN: 978-1-62708-234-1
... injected to control the scaling was added ahead of the preheater, where the boiler water still contained oxygen. As the chelate removed iron oxide, the O2 in the water continued to form more. Recommendations included moving the chelate addition to a point after the deaerator to stop the corrosion...
Abstract
Carbon steel tubes from a boiler feedwater heater feeding a deaerator were treated to control scale formation, but the treatment instead produced more iron oxide. The additional iron oxide reduced the tubing to a totally corroded condition. Investigation showed that the chelate injected to control the scaling was added ahead of the preheater, where the boiler water still contained oxygen. As the chelate removed iron oxide, the O2 in the water continued to form more. Recommendations included moving the chelate addition to a point after the deaerator to stop the corrosion.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091726
EISBN: 978-1-62708-217-4
... over a period of time. Within 34 h after testing, one of the pressure vessels blew up ( Fig. 1 ), and within a few days most of the others had failed. Fig. 1 Stress-corrosion failure of an Apollo Ti-6Al-4V reaction control system (RCS) pressure vessel due to nitrogen tetroxide. (a) Failed vessel...
Abstract
In January 1965, a Reaction Control System (RCS) pressure vessel (titanium alloy Ti-6Al-4V) on an Apollo spacecraft cracked in six adjacent locations. It used N2O4 for vehicle attitude control through roll, pitch, and yaw engines, and was protected from the N2O4 by a Teflon positive expulsion bladder. Investigation (visual inspection, pressure testing of 10 similar vessels, and chemical testing of the N2O4) supported the conclusion that the failure was due to stress corrosion from the N2O4, and specifically from a specification change in the military specification MIL-P-26539. Recommendations included revising the specification to require a minimum NO content of 0.6%.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006394
EISBN: 978-1-62708-217-4
.... This action could result in intergranular corrosion and/or SCC if the part was placed under load in an oxidizing medium. Fig. 1 SEM of fracture surface (a) from a failed 17-7PH stainless steel aircraft controller diaphragm showing intergranular fracture indicative of SCC. 170x. (b) SEM fractograph...
Abstract
A preflight inspection found a broken diaphragm from a side controller fabricated from 17-7 PH stainless steel in the RH 950 heat treatment condition. Failure occurred by cracking of the base of the flange-like diaphragm. The crack traveled 360 deg around the diaphragm. Scanning electron microscopy (SEM) revealed that the failure occurred by a brittle intergranular mechanism and stress-corrosion cracking (SCC), and indicated a failure mode of selective grain-boundary separation. The diaphragms were heat treated in batches of 25. An improper heat treatment could have resulted in the formation of grain boundary precipitates, including chromium carbides. It was concluded that failure of the diaphragm was due to a combination of sensitization caused by improper heat treatment and subsequent SCC. It was recommended that the remaining 24 sensor diaphragms from the affected batch be removed from service. In addition, a sample from each heat treat batch should be submitted to the Strauss test (ASTM A262, practice E) to determine susceptibility to intergranular corrosion. Also, it was recommended that a stress analysis be performed on the system to determine whether a different heat treatment (which would offer lower strength but higher toughness) could be used for this part.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... location. In concentration cells, the position of the anode and cathode are determined by differences in chemistry and therefore electrical potential on different parts of a metal surface. The rate of corrosion is controlled by the slowest half-reaction in the electrochemical cell. In the anaerobic...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006899
EISBN: 978-1-62708-225-9
... and Corrosion Control , 2nd ed. , John Wiley & Sons , 1971 , p 48 – 50 Selected Reference Selected Reference • Hydrogen Damage and Embrittlement , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 809 – 822 10.31399/asm.hb.v11.a0003552 ...
Abstract
Type 410 stainless steel bolts were used to hold together galvanized gray cast iron splice case halves. Before installation, the bolts were treated with molybdenum disulfide (MoS 2 ) antiseize compound. Several failures of splice case bolts were discovered in flooded manholes after they were in service for three to four months. Laboratory experiments were conducted to determine if the failure mode was hydrogen-stress cracking, if sulfides accelerate the failure, if heat treatment can improve the resistance against this failure mode, and if the type 305 austenitic stainless steel would serve as a replacement material. Based on test results, the solution to the hydrogen-stress cracking problem consisted of changing the bolt from type 410 to 305 stainless steel, eliminating use of MoS2, and limiting the torque to 60 N·m (540 in.·lb).
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001903
EISBN: 978-1-62708-217-4
... Abstract Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits...
Abstract
Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits in a failed control rotor spar tube assembly made of cadmium-plated AISI 4130 Cr-Mo alloy steel. Inadequate design was responsible for the failure. A lower tine of the main rotor blade cuff failed in fatigue. The rotor blade cuff was forged of 2014-T6 aluminum alloy. Initial stages of crack growth displayed features typical of low stress intensity fatigue of aluminum alloys. The fatigue resulted from abnormal fretting owing to inadequate torquing of the main retention bolts. Aircraft maintenance engineers and owners were advised to adhere to specifications when torquing this joint.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001808
EISBN: 978-1-62708-241-9
.... : Corrosion and Corrosion Control , 3rd edn , p. 240 . Wiley ( 1985 ). Selected references Selected references • Jack T.R. , Biological Corrosion Failures , Failure Analysis and Prevention , Vol 11 , ASM Handbook , Becker W.T. and Shipley R.J. , Ed., ASM International...
Abstract
Six cases of failure attributed to microbiologically influenced corrosion (MIC) were analyzed to determine if any of the failures could have been avoided or at least predicted. The failures represent a diversity of applications involving typical materials, primarily stainless steel and copper alloys, in contact with a variety of liquids, chemistries, and substances. Analytical techniques employed include stereoscopic examination, energy dispersive x-ray spectroscopy (EDS), temperature and pH testing, and metallographic analysis. The findings indicate that MIC is frequently the result of poor operations or improper materials selection, and thus often preventable.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... failures have had transgranular fractures, but intergranular fracture surfaces have been observed and are believed to have resulted from hydrogen-stress cracking, with the hydrogen resulting from the cathodic potential applied to the pipeline for corrosion control. A problem in attempting to use...
Abstract
This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also reviewed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001818
EISBN: 978-1-62708-241-9
... , 9th edn , pp. 97 – 100 . American Society of Metals, Metals Park, OH , USA ( 1989 ) 10.1007/BF02521387 7. Chawla S.L. , Gupta R.K. : Material Selection for Corrosion Control , pp. 12 , 143 . ASM International , Materials Park, OH, USA ( 1997 ) Selected references...
Abstract
A sleeve-shaped fire shield that operates inside one of two burner trains in an oil and gas processing unit ruptured after 15 y of service. A detailed analysis was conducted to determine how and why the sleeve failed. The investigation included visual inspection, chemical and gas analysis, mechanical property testing, stereomicroscopy, and metallographic examination. The fire sleeves are fabricated from 3-mm thick plate made of Incoloy 800 rolled into 540-mm diam sections welded along the seam. Three such sections are joined together by circumferential welds to form a single 2.8 m sleeve. The findings from the investigation indicated that internal oxidation corrosion, driven by high temperatures, was the primary cause of failure. Prolonged exposure to temperatures up to 760 °C resulted in sensitization of the material, making it vulnerable to grain boundary attack. This led to significant deterioration of the grain boundaries, causing extensive grain loss (grain dropping) and the subsequent thinning of sleeve walls. Prior to failure, some portions of the sleeve were only 1.6 mm thick, nearly half their original thickness.
1