Skip Nav Destination
Close Modal
Search Results for
corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1592 Search Results for
corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001824
EISBN: 978-1-62708-241-9
.... However, the investigation (which included visual, macroscopic, metallographic, SEM, and chemical analysis) showed that austenitic stainless steel and a nickel-base alloy were used instead. The unspecified materials are more prone to corrosion, particularly galvanic corrosion, which proved...
Abstract
Nineteen out of 26 bolts in a multistage water pump corroded and cracked after a short time in a severe working environment containing saline water, CO 2 , and H 2 S. The failed bolts and intact nuts were to be made from a special type of stainless steel as per ASTM A 193 B8S and A 194. However, the investigation (which included visual, macroscopic, metallographic, SEM, and chemical analysis) showed that austenitic stainless steel and a nickel-base alloy were used instead. The unspecified materials are more prone to corrosion, particularly galvanic corrosion, which proved to be the primary failure mechanism in the areas of the bolts directly exposed to the working environment. Corrosion damage on surfaces facing away from the work environment was caused primarily by chloride stress-corrosion cracking, aided by loose fitting threads. Thread gaps constitute a crevice where an aggressive chemistry is allowed to develop and attack local surfaces.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001651
EISBN: 978-1-62708-229-7
... Abstract Some of the admiralty brass tubes were failing in a heat exchanger. The heat exchanger cooled air by passing river water through the inside of the tubes. The wall thickness of all tubes ranged between 1.19 to 1.27 mm (0.047 to 0.050 in.). General intergranular corrosion occurred...
Abstract
Some of the admiralty brass tubes were failing in a heat exchanger. The heat exchanger cooled air by passing river water through the inside of the tubes. The wall thickness of all tubes ranged between 1.19 to 1.27 mm (0.047 to 0.050 in.). General intergranular corrosion occurred at the inside surfaces of the tubes. Transgranular stress-corrosion cracking, probably the result of sulphates under basic conditions, and dezincification occurred also as the result of galvanic corrosion under the deposits in the tubes. Recommendations were to use a closed-loop water system to eliminate sulphates, ammonia, etc., and to run trials on one unit with tubes of other alloys such as 80-20 Cu-Ni or 70-30 Cu-Ni to evaluate their performance prior to any large scale retubing operations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001652
EISBN: 978-1-62708-220-4
... Abstract Three separate corrosion mechanisms were involved in the failure of an AISI type 304 stainless steel pipe elbow. The major cracks, including the one that penetrated the wall, tend to be wide-mouthed, tapering to a blunt tip, with corrosion products filling much of the crack space...
Abstract
Three separate corrosion mechanisms were involved in the failure of an AISI type 304 stainless steel pipe elbow. The major cracks, including the one that penetrated the wall, tend to be wide-mouthed, tapering to a blunt tip, with corrosion products filling much of the crack space. This was characteristic of corrosion fatigue. The second type of cracking originated at some of the major cracks. These cracks were branched and transgranular, which is characteristic of stress-corrosion caused by chlorides. The third crack mode, an intergranular network, was most probably the result of hydrogen sulphide attack. The 13-year service life of the elbow made it difficult, if not impossible, to determine the order of the corrosion mechanisms or the length of time it took to reach the present state of degradation after the initiation of corrosion. Based on the long service life the present material has given, it was recommended that it be used again.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006823
EISBN: 978-1-62708-329-4
... Abstract This article illustrates the use of the American Petroleum Institute (API) 579-1/ASME FFS-1 fitness-for-service (FFS) code (2020) to assess the serviceability and remaining life of a corroded flare knockout drum from an oil refinery, two fractionator columns affected by corrosion under...
Abstract
This article illustrates the use of the American Petroleum Institute (API) 579-1/ASME FFS-1 fitness-for-service (FFS) code (2020) to assess the serviceability and remaining life of a corroded flare knockout drum from an oil refinery, two fractionator columns affected by corrosion under insulation in an organic sulfur environment, and an equalization tank with localized corrosion in the shell courses in a chemicals facility. In the first two cases, remaining life is assessed by determining the minimum thickness required to operate the corroded equipment. The first is based on a Level 2 FFS assessment, while the second involves a Level 3 assessment. The last case involves several FFS assessments to evaluate localized corrosion in which remaining life was assessed by determining the minimum required thickness using the concept of remaining strength factor for groove-like damage and evaluating crack-like flaws using the failure assessment diagram. Need for caution in predicting remaining life due to corrosion is also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... Abstract Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... Abstract High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... Abstract This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001826
EISBN: 978-1-62708-241-9
... caustic attack that led to ruptures in areas of high stress. The escaping steam eroded the outer surface of the tube causing heavy loss of metal around the rupture points. boiler tubes stress rupture caustic corrosion carbon steel oxide scale deposits punch marks inductively coupled plasma...
Abstract
A back wall riser tube in a high pressure boiler failed, interrupting operations in a cogeneration plant. The failure occurred in a tube facing the furnace, causing eight ruptured openings over a 1.8 m section. The investigation consisted of an on-site visual inspection, nondestructive testing, energy dispersive x-ray analysis, and inductively coupled plasma mass spectrometry. The tube was made from SA 210A1 carbon steel that had been compromised by wall thinning and the accumulation of fire and water-side scale deposits. Investigators determined that the tube failed due to prolonged caustic attack that led to ruptures in areas of high stress. The escaping steam eroded the outer surface of the tube causing heavy loss of metal around the rupture points.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
... Abstract Gas turbines and other types of combustion turbomachinery are susceptible to hot corrosion at elevated temperatures. Two such cases resulting in the failure of a gas turbine component were investigated to learn more about the hot corrosion process and the underlying failure mechanisms...
Abstract
Gas turbines and other types of combustion turbomachinery are susceptible to hot corrosion at elevated temperatures. Two such cases resulting in the failure of a gas turbine component were investigated to learn more about the hot corrosion process and the underlying failure mechanisms. Each component was analyzed using optical and scanning electron microscopy, energy dispersive spectroscopy, mechanical testing, and nondestructive techniques. The results of the investigation provide insights on the influence of temperature, composition, and microstructure and the contributing effects of high-temperature oxidation on the hot corrosion process. Preventative measures are also discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001765
EISBN: 978-1-62708-241-9
... Abstract This paper describes the investigation of a corrosion failure of bottom plates on an aboveground tank used for the storage of potable water. The tank was internally inspected for the first time after six years of service. Paint blisters and rust spots were observed on the bottom plates...
Abstract
This paper describes the investigation of a corrosion failure of bottom plates on an aboveground tank used for the storage of potable water. The tank was internally inspected for the first time after six years of service. Paint blisters and rust spots were observed on the bottom plates and first to third course shell plates. Sand blasting and repainting of the bottom plates and first course shell plates was to be used as a remedial measure. However, during the sand blasting, holes and deep pitting were observed on the bottom plates. On-site visual inspection, magnetic flux leakage (MFL) inspection, ultrasonic testing (UT), and evaluation of the external cathodic protection (CP) system were used in the failure analysis. The corrosion products were analyzed using energy-dispersive X-ray analysis (EDAX). The failure is attributed to the ingress of water and its impoundment under the tank bottom along the periphery inside the ring wall and failure of water side epoxy coating. Various measures to prevent such failures in the future are recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048420
EISBN: 978-1-62708-226-6
... Abstract Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head was studied. The attack on the 316LR stainless steel was only shallow. Mechanical grinding and polishing structures were exhibited...
Abstract
Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head was studied. The attack on the 316LR stainless steel was only shallow. Mechanical grinding and polishing structures were exhibited by a large portion of the contact area. Fine corrosion pits in the periphery were observed and intense mechanical material transfer that can take place during fretting was revealed. Smearing of material layers over each other during wear was observed and attack by pitting corrosion was interpreted to be possible.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048397
EISBN: 978-1-62708-226-6
... Abstract A large portion of the four-hole Lane plate disintegrated and consisted mainly of corrosion products after remaining in the body for 26 years. Transformation structures and carbides were exhibited by the plate which was made from chromium steel. Minimal corrosion was exhibited...
Abstract
A large portion of the four-hole Lane plate disintegrated and consisted mainly of corrosion products after remaining in the body for 26 years. Transformation structures and carbides were exhibited by the plate which was made from chromium steel. Minimal corrosion was exhibited by the soft austenitic 304 stainless steel used to make the screws. The corrosion products of the plate were revealed by microprobe analysis to impregnate the surrounding tissues. Improper material selection was concluded to be the reason for the general corrosion behavior.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048400
EISBN: 978-1-62708-226-6
... by the microstructure. Intercrystalline corrosion with pitted grains was indicated by SEM fractography. Improper heat treatment of the steel was interpreted to have led to intercrystalline corrosion and implant separation. Heat treatment Surgical implants 304 UNS S30400 Intergranular fracture Intergranular...
Abstract
Cerclage wire, which was used with two screws and washers for a tension band in a corrective internal fixation, was found broken at several points and corroded after nine months in service. The material was examined using energy-dispersive x-ray analysis and determined not to be in compliance with standards (type 304 stainless steel without molybdenum). The screws and washers were found to be made of remelted implant-quality type 316L stainless steel and were intact. Signs of sensitization, characterized by chromium carbide precipitates at the grain boundaries, were revealed by the microstructure. Intercrystalline corrosion with pitted grains was indicated by SEM fractography. Improper heat treatment of the steel was interpreted to have led to intercrystalline corrosion and implant separation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048419
EISBN: 978-1-62708-226-6
... Abstract Heavy pitting corrosion on type 304 stainless steel bone screw was studied. A screw head that exhibited heavy pitting corrosion attack was observed. Deep tunnels that penetrated the screw head and followed the inclusion lines were revealed. The screw was inserted in a plate made...
Abstract
Heavy pitting corrosion on type 304 stainless steel bone screw was studied. A screw head that exhibited heavy pitting corrosion attack was observed. Deep tunnels that penetrated the screw head and followed the inclusion lines were revealed. The screw was inserted in a plate made of type 316LR stainless steel and some mechanical fretting and very few corrosion pits were revealed. Type 304 stainless steel was deemed not to be satisfactory as an implant material.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001518
EISBN: 978-1-62708-228-0
... of the failure zone. The physical cause of the hose failure was by severe localized corrosion of the layer of reinforcing braid wire at the transition between the coupling and the hose at the end of the ferrule. This caused a reduction of the wire cross-sectional area to the extent that the wires broke. Once...
Abstract
A fireball engulfed half of a drill rig while in the process of drilling a shot hole. Subsequent investigation revealed the cause of the fire was the failure of the oil return hose to the separator/receiver in the air compressor. The failed hose was a 50.8 mm 100R1 type hose, as specified in AS 3791-1991 Hydraulic Hoses. This type of hose consisted of an inner tube of oil-resistant synthetic rubber, a single medium-carbon steel wire braid reinforcement, and an oil-and-weather resistant synthetic rubber cover. The wire braiding was found to be severely corroded in the area of the failure zone. The physical cause of the hose failure was by severe localized corrosion of the layer of reinforcing braid wire at the transition between the coupling and the hose at the end of the ferrule. This caused a reduction of the wire cross-sectional area to the extent that the wires broke. Once the majority of the braid wires were broken there was not enough intrinsic strength in the rubber inner hose to resist the normal operating pressures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091358
EISBN: 978-1-62708-233-4
... used in the valve. Manganese sulfide stringers in the valve were exposed at end-grain surfaces in contact with the beverage. The stringers, which were anodic to the surrounding metal, were subject to corrosion, producing a hydrogen sulfide concentration in the immediately adjacent liquid...
Abstract
After about two years in service, a 303 stainless steel valve in contact with a carbonated soft drink in a vending machine occasionally dispensed a discolored drink with a sulfide odor. According to the laboratory at the bottling plant, the soft drink in question was strongly acidic, containing citric and phosphoric acids and having a pH of 2.4 to 2.5. Investigation (visual inspection, chemical analysis, immersion testing in the soft drink, and 100x unetched micrographs) supported the conclusion that the failure was caused by the size and distribution of sulfide stringers in the alloy used in the valve. Manganese sulfide stringers in the valve were exposed at end-grain surfaces in contact with the beverage. The stringers, which were anodic to the surrounding metal, were subject to corrosion, producing a hydrogen sulfide concentration in the immediately adjacent liquid. Recommendations included changing the valve material to type 304 stainless steel.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046969
EISBN: 978-1-62708-227-3
... Abstract Aluminide-coated and uncoated IN-713 turbine blades were returned for evaluation after service in a marine environment because of severe corrosion. Based on service time, failure of these blades by corrosive deterioration was considered to be premature. Analysis (visual inspection...
Abstract
Aluminide-coated and uncoated IN-713 turbine blades were returned for evaluation after service in a marine environment because of severe corrosion. Based on service time, failure of these blades by corrosive deterioration was considered to be premature. Analysis (visual inspection, 2.7x micrographic examination on sections etched with ferric chloride and hydrochloric acid in methanol) supported the conclusions that the blades failed by hot-corrosion attack. Variation in rate of attack on coated blades was attributed to variation in integrity of the aluminide coating, which had been applied in 1966, when these coatings were relatively new. It is evident that maintaining the integrity of a protective coating could significantly increase the life of a nickel-base alloy blade operating in a hot and corrosive environment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091350
EISBN: 978-1-62708-227-3
... Abstract Cracks occurred in a new ship hull after only three months in service. It was noted that the 5xxx series of aluminum alloys are often selected for weldability and are generally very resistant to corrosion. However, if the material has prolonged exposure at slightly elevated...
Abstract
Cracks occurred in a new ship hull after only three months in service. It was noted that the 5xxx series of aluminum alloys are often selected for weldability and are generally very resistant to corrosion. However, if the material has prolonged exposure at slightly elevated temperatures of 66 to 180 deg C (150 to 350 deg F), an alloy such as 5083 can become susceptible to intergranular corrosion. Investigation (visual inspection, corrosion testing, SEM images) supported the conclusion that the cracks occurred because during exposures to chloride solutions like seawater, galvanic couples formed between precipitates and the alloy matrix, leading to severe intergranular attack. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001164
EISBN: 978-1-62708-227-3
... Abstract Plate perforation occurred in the cylindrical section and walls of the inlet foot (2.38 mm thick Incoloy 825 plate welded using INCO welding rod 135) of an inert gas fire prevention system in an oil tanker. Cross-sectional microprobe analysis showed the corrosion product to contain...
Abstract
Plate perforation occurred in the cylindrical section and walls of the inlet foot (2.38 mm thick Incoloy 825 plate welded using INCO welding rod 135) of an inert gas fire prevention system in an oil tanker. Cross-sectional microprobe analysis showed the corrosion product to contain sulfur, mainly from the flue gas, and calcium and chlorine, mainly from the sea water. The gray corrosion product was interspersed with rust and a black carbonaceous deposit. Corrosion pitting and poor weld penetration, with carbide precipitation and heavy etching at grain boundaries, indicated sensitization and susceptibility to aqueous intergranular corrosion. Chemical analysis showed the predominant acid radical to be sulfate (6.20% in the carbonaceous deposit and 0.60% in the corrosion product), suggesting that oxidation of SO2 in the flue gas caused the corrosion. Moisture condensation, the carbon acting as a cathode, and alloy susceptibility to intergranular corrosion contributed to the corrosion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001673
EISBN: 978-1-62708-227-3
... Abstract The failure of a 90-10 cupronickel heat exchanger tube resulted in flooding of the vessel and subsequently sinking it. The corrosion of the cupronickel alloy was facilitated by the high sulfur content of the seawater in which it operated. The failure modes were anodic dissolution...
Abstract
The failure of a 90-10 cupronickel heat exchanger tube resulted in flooding of the vessel and subsequently sinking it. The corrosion of the cupronickel alloy was facilitated by the high sulfur content of the seawater in which it operated. The failure modes were anodic dissolution and copper reprecipitation.
1