1-20 of 71 Search Results for

copper base forgings

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001283
EISBN: 978-1-62708-215-0
.../Identification Macroexamination and microstructural analysis clearly showed that the unusual cracking and radial bursting of the forgings was associated with the poor quality of the raw material, which contained harmful segregation of copper-rich particles, oxide film, and gas voids caused by improper...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium. aluminum alloys austenitic stainless steel carbon...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... as one of the first comprehensive studies into the cause of season cracking, Moore, Beckinsale, and Mallinson concluded in their 1921 paper, “The Season Cracking of Brass and Other Copper Alloys,” that “some agency additional to the presence of initial (residual) stress appears to be necessary...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
..., and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts. anisotropy blisters centerline shrinkage chemical...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046737
EISBN: 978-1-62708-229-7
... of small forging laps. Because of the susceptibility of copper-zinc alloys that contain relatively high percentages of zinc (manganese bronze castings and naval brass fasteners) to SCC in the recirculating water in the cooling tower, the castings were replaced with copper alloy C87200 (cast silicon...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... structure that is different from base structure. Hydrogen suspected. Nital etch Any forming process, such as forging or thread rolling, can produce folds or laps. Generally, folds in threads are called laps. Folds follow grain flow and do not cross it. The tips are blunt and often bifurcated. Because...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
.... The mechanical properties of alloys that are not hardenable by heat treatment, such as many copper- and aluminum-base alloys, depend primarily on grain size and cold work. Fine grains are generally tougher and stronger than coarse grains, but they are less ductile. When metals with coarse grains are deformed...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... HV) at the edges of the weld metal. The normal hardness of the base metal was 150 to 160 HV, hardness in the HAZ was 150 to 180 HV, and hardness of the weld metal was 230 to 250 HV. Chemical analysis of the material in the high-hardness bands revealed a composition of 70Fe-17Cr-9Ni-1.2Mn...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
.... The article focuses on the types of hydrogen embrittlement that occur in all the major commercial metal and alloy systems, including stainless steels, nickel-base alloys, aluminum and aluminum alloys, titanium and titanium alloys, copper and copper alloys, and transition and refractory metals. The specific...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001533
EISBN: 978-1-62708-225-9
... of babbitt bushes was caused by a simultaneous and interrelated exhibition of fatigue and wear processes that depend considerably on cohesion strength between the bush and the bearing base and accumulation of defects on the contact surface between the bush and the shaft. Bearings Bushings Plasma...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001504
EISBN: 978-1-62708-217-4
.... The SCC failures occurred in parts made from a material now well known for its severe susceptibility to SCC. In this particular case, contributing factors were exposure of the end grains in the hole and possibly a galvanic couple between the aluminium forging and the beryllium copper bushings...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... Analysis of Hydrogen Embrittlement in Commodity-Grade Steels Stainless Steels Nickel-Base Alloys Aluminum and Aluminum Alloys Copper and Copper Alloys Titanium and Titanium Alloys Transition and Refractory Metals Hydrogen Embrittlement Fracture Characteristics Hydrogen Reaction...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001021
EISBN: 978-1-62708-214-3
... was in the main spar of the delta wing. The crash was apparently caused by engine failure. The fatigue crack in the bolt hole was located during a later analysis. The Mirage III-0 wing main spar ( Fig. 1 ) is machined from a large forging of AU4SG, an aluminum-copper alloy similar in composition to 2014...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001031
EISBN: 978-1-62708-214-3
...-Z is a copper-base alloy containing 3% Ag and 0.5% Zr. Silver acts as a precipitation hardener, and zirconium acts as a getter for soluble oxygen. The NARloy-Z goes through a fabrication process that includes casting, forging, and heat treatment. Chemical analysis is performed at various stages...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... are as follows: Base alloy Liquid embrittlers Aluminum Hg, Ga, Zn, In, Na Steel Hg, Ga, Cd, Zn, In, Li Copper Hg, In, Li, Na Magnesium Zn, In Titanium Hg, Cd Silver Hg, Ga Intergranular SCC and Hydrogen Embrittlement Grain boundaries can become weakened or embrittled...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
.... (a) Rock candy appearance from atmospheric stress-corrosion cracking of a high-strength aluminum alloy with equiaxed grains. Original magnification: 130×. (b) Intergranular fracture along the part line of an aluminum forging Fig. 5 Tensile test fracture surface of a high-purity, coarse-grained Al...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... material under high pressures during the working process; for example, oxides, slivers, or chips of the base material are occasionally rolled or forged into the surface. Most of these discontinuities are present in the metal before final processing and are open to the surface. Standard nondestructive...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001617
EISBN: 978-1-62708-227-3
... in one type of coupling, undue stress concentrations at some of the crack-initiation sites, and overtorquing of some couplings during installation. Recommendations on ways to prevent further failures based on these causes are discussed. Progression markings Residual stress 41255B Cu-9Al-4Fe-4Ni...