Skip Nav Destination
Close Modal
By
S. Maruthamuthu, P. Dhandapani, S. Ponmariappan, S. Sathiyanarayanan, S. Muthukrishnan ...
Search Results for
cooling curve
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 130 Search Results for
cooling curve
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2002
Fig. 41 Centerline cooling curves showing the effect of scale on the cooling curves of two different steels quenched in fast oil without agitation. (a) 1095 steel; oil temperature, 50 °C (125 °F). (b) 18-8 stainless steel; oil temperature, 25 °C (75 °F). Test specimens were 13 mm (0.5 in.) diam
More
Image
Published: 01 January 2002
Fig. 66 Comparison of cooling curves as a workpiece cools into and through the martensite transformation range for a conventional quenching and tempering process and for interrupted quenching processes. (a) Conventional quenching and tempering. (b) Marquenching. (c) Modified marquenching. Ae 1
More
Image
Published: 01 January 2002
Fig. 67 Effect of clay coating on cooling curves of steel test specimen quenched into still water at 30 °C (86 °F). Test specimen, JIS S45C steel cylinder (10 mm, or 0.40 in., diam × 30 mm, or 1.2 in., long)
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... temperature and the M s may be determined in order to construct a CCT diagram, such as the one shown for an unalloyed carbon steel (AISI 1045) in Fig. 2 . Continuous cooling transformation curves provide data on the temperatures for each phase transformation, the amount of transformation product obtained...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Image
in Problems Associated with Heat Treated Parts
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 18 Cooling paths for (a) martempering, (b) austempering, and (c) time quenching superimposed on the isothermal transformation curve for eutectoid steel
More
Image
Published: 01 January 2002
Fig. 77 Direct quenching from carburizing temperature. (a) Phase diagram schematic. (b) Continuous cooling transformation curve for a high-carbon surface. (c) Micrograph of direct quenched 3% Ni-Cr carburized steel. 280×. Source: Ref 30
More
Image
Published: 01 January 2002
Fig. 10 Development of thermal stresses within steel on cooling. T, time instant at maximum temperature difference; 0, time instant of stress reversal; curve A, stress variation at the surface under elastic conditions. B and C are actual thermal stress variations at the surface and the core under
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001758
EISBN: 978-1-62708-241-9
.... To achieve such remarkable results, turbine blade engineers over the last 40 years have developed various gamma prime (γ′) strengthened, nickel-based superalloys that can be investment cast into an airfoil shape with intricate internal passages required for airfoil cooling. The earlier versions...
Abstract
This article describes the visual, fractographic, and metallographic evidence typically encountered when analyzing stress rupture of turbine airfoils. Stress-rupture fractures are generally heavily oxidized, tend to be rough in texture, and are primarily intergranular and/or interdendritic in appearance compared to smoother, transgranular fatigue type fractures. Often, gross plastic yielding is visible on a macroscopic scale. Commonly observed microstructural characteristics include creep voiding along grain boundaries and/or interdendritic regions. Internal voids can also nucleate at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001709
EISBN: 978-1-62708-229-7
... at 693 deg F (367 deg C) and 2935 psi (20.5 MPa), failed near the IK boxes as a result of thermal fatigue. Thermal fatigue damage was accelerated by repetitive exposure to water droplets from the soot blower and the associated rapid cooling. Boilers Electric power generation Tubes ASME SA210-A1...
Abstract
Several waterwall tubes in a power station boiler failed after ten years of service. The boiler is a suspension type equipped with 30 IK boxes where retractable soot blowers are inserted to clean the inside of the boiler using high-pressure steam. The tubes, which operate at 693 deg F (367 deg C) and 2935 psi (20.5 MPa), failed near the IK boxes as a result of thermal fatigue. Thermal fatigue damage was accelerated by repetitive exposure to water droplets from the soot blower and the associated rapid cooling.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001487
EISBN: 978-1-62708-234-1
... in service. As a result, a portion of the conductor is stressed in compression beyond its elastic limit, causing permanent distortion so that, on cooling at standstill, an overall contraction occurs. If the cycle is repeated, further contraction takes place, the amount diminishing with each successive cycle...
Abstract
Copper shortening has been found to occur in the rotor windings of turbo alternators and takes the form of a progressive reduction in the length of the coils leading to distortion of the end windings. The trouble results from the high loading which develops between successive layers of the strip conductor due to centrifugal force. This leads to a high frictional binding force between turns and prevents axial expansion under normal heating in service. Rotor trouble which proved to be due to copper shortening was found in a set rated at 27.5 MW. It was manufactured in 1934 at which time silver-bearing copper was not available. The use of hard-drawn silver-bearing copper for a rewind, in conjunction with special attention to blocking up the end windings, is confidently expected to effect a complete cure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
... to be considered in design is its coefficient of thermal expansion. Most heat-treating problems could be solved if this coefficient could be controlled [ 1 ]. Almost all solids expand on heating and contract upon cooling. The relationship between thermal conductivity and thermal expansion is important in designing...
Abstract
A deformed steel tube was received for failure analysis after buckling during a heat-treat operation. The tube was subjected to various metallurgical tests as well as nondestructive testing to confirm the presence of residual stresses. The microstructure of the tube was found to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001711
EISBN: 978-1-62708-229-7
... + log t f ) , where T = T ( ° F ) + 460. Besides, in seam cooled pipes, the internal magnetite scale thickness may also be used as a criterion for failure analysis. The equation for scale thickness is: (Eq 2) log X = 0.00022 ( T + 460 ) ( 20...
Abstract
Failures of 10Cr-Mo9-10 and X 20Cr-Mo-V12-1 superheated pipes during service in steam power generation plants are described. Through micrographic and fractographic analysis, creep and overheating were identified as the cause of failure. The Larson-Miller parameter is computed, as a function of oxidation thickness, temperature and time, confirming the creep failure diagnostic.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001187
EISBN: 978-1-62708-226-6
... purposes, were found at the point of origin of fracture A2. The material had been heated to the melting point during the engraving of the number, and multiple cracking occurred during cooling. One of these cracks led to the development of fatigue fracture A2. Drills Engraving Stainless steel...
Abstract
A stainless tool steel bone drill broke during an operation on a patient and was examined. It showed two fatigue fractures, one of which had started from a sharp-edged, coarsely milled slot (fracture A1), and the other from a point on the outer sheath surface which was not subjected to particularly high stresses (fracture A2). Fatigue fracture A1 resulted from the stress concentration built up at this point as a result of the sharp edges and the coarse machining grooves. The remains of a number, which had been inscribed with an electrical engraving tool for identification purposes, were found at the point of origin of fracture A2. The material had been heated to the melting point during the engraving of the number, and multiple cracking occurred during cooling. One of these cracks led to the development of fatigue fracture A2.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... deformation is typically characterized by time-dependent strain curves, as discussed in more detail in the article “Creep and Stress Rupture Failures” in this Volume. Most (but not all) creep curves show three distinct stages, as briefly described in the following. Creep strength (i.e., the resistance...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001769
EISBN: 978-1-62708-241-9
... current between control and bacterial inoculated system. Fig. 8 Polarization behavior for mild steel in the absence and the presence of calcium precipitating bacteria (anodic and cathodic curve) in cooling water system Impedance spectroscopy analysis is presented in Fig. 9 and Table 4...
Abstract
This study examines the role of calcium-precipitating bacteria (CPB) in heat exchanger tube failures. Several types of bacteria, including Serratia sp. (FJ973548), Enterobacter sp. (FJ973549, FJ973550), and Enterococcus sp. (FJ973551), were found in scale collected from heat exchanger tubes taken out of service at a gas turbine power station. The corrosive effect of each type of bacteria on mild steel was investigated using electrochemical (polarization and impedance) techniques, and the biogenic calcium scale formations analyzed by XRD. It was shown that the bacteria contribute directly to the formation of calcium carbonate, a critical factor in the buildup of scale and pitting corrosion on heat exchanger tubes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089676
EISBN: 978-1-62708-224-2
... steel 100x, micrograph of a nital-etched specimen that had been austenitized 20 min at 1095 deg C (2000 deg F) and air cooled 315x, and micrograph of the same specimen after annealing 68 h at 480 deg C (900 deg F) 1000x). Investigation supported the conclusions that the chain link failed in a brittle...
Abstract
Chain link, a part of a mechanism for transferring hot or cold steel blooms into and out of a reheating furnace, broke after approximately four months of service. The link was cast from 2% Cr austenitic manganese steel and was subjected to repeated heating to temperatures of 455 to 595 deg C (850 to 1100 deg F). Examination included visual inspection, macrograph of a nital-etched specimen from an as-received chain link 1.85x, micrographs of a nital-etched specimen from an as-received chain link 100x/600x, normal microstructure of as-cast standard austenitic manganese steel 100x, micrograph of a nital-etched specimen that had been austenitized 20 min at 1095 deg C (2000 deg F) and air cooled 315x, and micrograph of the same specimen after annealing 68 h at 480 deg C (900 deg F) 1000x). Investigation supported the conclusions that the chain link failed in a brittle manner, because the austenitic manganese steel from which it was cast became embrittled after being reheated in the temperature range of 455 to 595 deg C (850 to 1100 deg F) for prolonged periods of time. The alloy was not suitable for this application, because of its metallurgical instability under service conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001477
EISBN: 978-1-62708-229-7
... of crystallinity of the fracture surfaces ascertained in order to establish the ductilelbrittle transition curve for the material. The test pieces were cut axially from the plate, the notch being arranged in the approximate direction of the major cracking. Results are shown in Table 4 the curve being...
Abstract
During the routine hydraulic pressure test of a boiler following modification, failure by leakage from the drum took place and was traced to a region where extensive multiple cracking had occurred. Catastrophic rupture or fragmentation of the vessel fortunately did not take place. Prior to the test, cracking was present already, extending up to 90% of the wall thickness. Analyses of brownish deposit material did not reveal the presence of any substances likely to cause stress-corrosion cracking of a Ni-Cu-Mo low-alloy steel.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
... into a quench chamber. The syngas and slag are rapidly cooled in a water bath contained in the quench chamber which also serves to separate the syngas from the slag. The syngas exits the gasifier and flows through additional stages of scrubbers. Figure 2 shows a simplified flow diagram for the gasifier...
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... nuclei is proportional to the available grain boundary area. Larger grained materials shift the nose of the Time-Temperature-Transformation (TTT) curve to the right, inhibiting pearlite nucleation and promoting martensite formation. Much of the hardenability research has been performed on a moderately...
Abstract
Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills of the metallurgical failure analyst. The empirical information supplied by hardenability analysis can provide additional processing and service insight to the investigator. The intent of this paper is to describe some applications of steel thermal response concepts in failure analysis, and several case studies are included to illustrate these applications.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... Correct posttreatment An important aspect of successful heat treatment is procedure qualification and process controls to ensure proper heating and cooling of a metal during heat treatment. The furnace must be of the proper size and type, and temperatures must be controlled within the prescribed...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.