Skip Nav Destination
Close Modal
By
S. Maruthamuthu, P. Dhandapani, S. Ponmariappan, S. Sathiyanarayanan, S. Muthukrishnan ...
Search Results for
control systems
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 341 Search Results for
control systems
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091726
EISBN: 978-1-62708-217-4
... Abstract In January 1965, a Reaction Control System (RCS) pressure vessel (titanium alloy Ti-6Al-4V) on an Apollo spacecraft cracked in six adjacent locations. It used N2O4 for vehicle attitude control through roll, pitch, and yaw engines, and was protected from the N2O4 by a Teflon positive...
Abstract
In January 1965, a Reaction Control System (RCS) pressure vessel (titanium alloy Ti-6Al-4V) on an Apollo spacecraft cracked in six adjacent locations. It used N2O4 for vehicle attitude control through roll, pitch, and yaw engines, and was protected from the N2O4 by a Teflon positive expulsion bladder. Investigation (visual inspection, pressure testing of 10 similar vessels, and chemical testing of the N2O4) supported the conclusion that the failure was due to stress corrosion from the N2O4, and specifically from a specification change in the military specification MIL-P-26539. Recommendations included revising the specification to require a minimum NO content of 0.6%.
Image
in Thrust Bearing Failure Leading to the Destruction of a Propeller Rotor
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 2 Schematic of the collective pitch control system, showing the thrust bearing set, control tube, and actuator
More
Image
in Reaction Control System Oxidizer Pressure Vessels
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Stress-corrosion failure of an Apollo Ti-6Al-4V reaction control system (RCS) pressure vessel due to nitrogen tetroxide. (a) Failed vessel after exposure to pressurized N 2 O 4 for 34 h. (b) Cross section through typical stress-corrosion cracks. 250×
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001793
EISBN: 978-1-62708-241-9
... of a Controllable Pitch Underwater Thruster System ( Woods Hole Oceanographic Institution, Massachusetts Institute of Technology , Cambridge , 1993 ) 10.1575/1912/5531 3. A Smart Way of Using a Controllable Pitch Propeller , Kamome Propeller 4. SCP Controllable Pitch Propeller—Application-Oriented...
Abstract
A controllable pitch propeller (CPP) on a dynamic positioning ship failed after eight months of operation. The CPP design consists of a hollow propeller shaft and a concentrically located pipe that operates inside. The pitch of the propeller blades is controlled hydraulically through the longitudinal displacement of the inner (concentric) pipe. Fractography, microstructural, microhardness, and chemical analyses revealed that the concentric pipe failed due to fatigue. Fatigue cracks initiated along longitudinal welds where wire spacers attach to the external surface of the pipe. The effect of crack-like defects, stress concentration at the weld toe, residual tensile stress, and lack of penetration contributed to a shorter fatigue crack initiation phase and premature failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001363
EISBN: 978-1-62708-215-0
... of the collective pitch control system, showing the thrust bearing set, control tube, and actuator Fig. 3 Pitch control thrust bearing races, showing signs of overheating and plastic deformation. (a) Inner races, as exposed. (b) Outer races, as exposed Fig. 4 Pitch control thrust bearing inner...
Abstract
An accidental overspeed condition during wind tunnel testing resulted in the destruction of a propeller rotor The occurrence was initially attributed to malfunction in the collective pitch control system. All fractured parts in the system were inspected. Highly suspect parts, including the pitch control thrust bearing set, head bolts, hub fork, and actuator rod end, were examined in more detail The thrust bearing set (52100 steel) was identified as the probable source of the uncommanded pitch angle change. A complete failure analysis of the bearing indicated that failure was precipitated by excessive heating, causing cage disintegration, plastic flow of the races and balls, and eventual separation of inner and outer races. It was recommended that the bearing set be resized to accommodate the large thrust as and that a thermocouple be added to monitor the condition of the bearing during testing.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001366
EISBN: 978-1-62708-215-0
...-cycle fatigue and had progressed from multiple origins on the vane surface. Structural analysis indicated that the fatigue loading probably had been caused by forced excitation, resulting in the impeller vibrating at its resonant frequency. It was recommended that the impeller design, control systems...
Abstract
An AMS 4126 (7075-T6) aluminum alloy impeller from a radial inflow turbine fractured during commissioning. Initial examination showed that two adjacent vanes had fractured through airfoils in the vicinity of the vane leading edges, and one vane fractured through an airfoil near the hub in the vicinity of the vane trailing edge. Some remaining vanes exhibited radial and transverse cracks in similar locations. Binocular and scanning electron microscope examinations showed that the cracks had been caused by high-cycle fatigue and had progressed from multiple origins on the vane surface. Structural analysis indicated that the fatigue loading probably had been caused by forced excitation, resulting in the impeller vibrating at its resonant frequency. It was recommended that the impeller design, control systems, and material of construction be changed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048665
EISBN: 978-1-62708-217-4
.... It was concluded that stress-corrosion cracks grew out from the rust pits. The pin material was changed from 300M steel to PH 13-8 Mo stainless steel, which is highly resistant to rusting and SCC and the jacking control system was modified to prevent overdriving. Landing gear Materials substitution Pitting...
Abstract
The jackscrew drive pins on a landing-gear bogie failed when the other bogie on the same side of the airplane was kneeled for tire change. The pins, made of 300M steel, were shot peened and chromium plated on the outside surface and were cadmium plated and painted with polyurethane on the inside surface. The top of the jackscrew was 6150 steel. Both ends of the pins were revealed to be dented where the jackscrew had pressed into them and were observed to have been resulted due to overdriving the jackscrew at the end of an unkneeling cycle. These dented areas were found to be heavily corroded with chromium plating missing. A heavily corroded intergranular fracture mode was revealed by chromium-carbon replicas of the areas of fracture origin. Deep corrosion pits adjacent to the fracture origins and directly beneath cracks in the chromium plate were revealed by metallographic examination. It was concluded that stress-corrosion cracks grew out from the rust pits. The pin material was changed from 300M steel to PH 13-8 Mo stainless steel, which is highly resistant to rusting and SCC and the jacking control system was modified to prevent overdriving.
Image
in Remote Inspection of a 46-Year-Old Buried High-Level Waste Storage Tank
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Failure Analysis of a Radio-Activated Accelerator Component
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 5 The control room for the Monitor system showing the master-slave force-feedback manipulator controls and the television screens
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003503
EISBN: 978-1-62708-180-1
... of a failure. Although designers have always had to be concerned with the possible effects of item failures, FMEA developed as a formal methodology during the 1950s at Grumman Aircraft Engineering Corporation, where it was used to analyze the safety of flight control systems for naval aircraft ( Ref 1 , 2...
Abstract
This article describes the methodology for performing a failure modes and effects analysis (FMEA). It explains the methodology with the help of a hot water heater and provides a discussion on the role of FMEA in the design process. The article presents the analysis procedures and shows how proper planning, along with functional, interface, and detailed fault analyses, makes FMEA a process that facilitates the design throughout the product development cycle. It also discusses the use of fault equivalence to reduce the amount of labor required by the analysis. The article shows how fault trees are used to unify the analysis of failure modes caused by design errors, manufacturing and maintenance processes, materials, and so on, and to assess the probability of failure mode occurrence. It concludes with information on some of the approaches to automating the FMEA.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001769
EISBN: 978-1-62708-241-9
... for the calcium precipitating bacteria in cooling water system S. No. System R t values, Ω cm 2 R s values, Ω cm 2 R ct values, Ω cm 2 1 Control 2331 22 2309 2 Experiment 800 19 781 Fig. 10 A model for accumulation of calcium carbonate deposition on mild steel...
Abstract
This study examines the role of calcium-precipitating bacteria (CPB) in heat exchanger tube failures. Several types of bacteria, including Serratia sp. (FJ973548), Enterobacter sp. (FJ973549, FJ973550), and Enterococcus sp. (FJ973551), were found in scale collected from heat exchanger tubes taken out of service at a gas turbine power station. The corrosive effect of each type of bacteria on mild steel was investigated using electrochemical (polarization and impedance) techniques, and the biogenic calcium scale formations analyzed by XRD. It was shown that the bacteria contribute directly to the formation of calcium carbonate, a critical factor in the buildup of scale and pitting corrosion on heat exchanger tubes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001149
EISBN: 978-1-62708-232-7
... Abstract A large diameter steel pipe reinforced by stiffening rings with saddle supports was subjected to thermal cycling as the system was started up, operated, and shut down. The pipe functioned as an emission control exhaust duct from a furnace and was designed originally using lengths...
Abstract
A large diameter steel pipe reinforced by stiffening rings with saddle supports was subjected to thermal cycling as the system was started up, operated, and shut down. The pipe functioned as an emission control exhaust duct from a furnace and was designed originally using lengths of rolled and welded COR-TEN steel plate butt welded together on site. The pipe sustained local buckling and cracking, then fractured during the first five months of operation. Failure was due to low cycle fatigue and fast fracture caused by differential thermal expansion stresses. Thermal lag between the stiffening rings welded to the outside of the pipe and the pipe wall itself resulted in large radial and axial thermal stresses at the welds. Redundant tied down saddle supports in each segment of pipe between expansion joints restrained pipe arching due to circumferential temperature variations, producing large axial thermal bending stresses. Thermal cycling of the system initiated fatigue cracks at the stiffener rings. When the critical crack size was reached, fast fracture occurred. The system was redesigned by eliminating the redundant restraints and by modifying the stiffener rings to permit free radial thermal breathing of the pipe.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems. aluminum aluminum alloys condition monitoring cooling towers copper copper alloys corrosion...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001701
EISBN: 978-1-62708-219-8
... by oxygen concentration cells and oxygen-pitting related corrosion. Both types of corrosion are due to the poor quality of the water and the lack of corrosion control in the water system. Water chemistry Water heaters Water pipelines Water treatment ASTM A106 UNS K03006 Crevice corrosion...
Abstract
A closed-loop hot water heating system at a museum in South Carolina was the subject of failure evaluation. The system consisted of plain carbon steel pipes (Schedule 40) made of ASTM A 106 or A 53 (ERW or seamless). The supply and return lines were made of the same materials. The fittings were mechanically threaded assemblies. Temperatures ranged from 150 to 155 deg F (65.6 to 68.3 deg C). Leaks in the system had reportedly initiated immediately after the building had been placed in service. The cause of corrosion inside the steel pipes was attributed to tuberculation caused by oxygen concentration cells and oxygen-pitting related corrosion. Both types of corrosion are due to the poor quality of the water and the lack of corrosion control in the water system.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001559
EISBN: 978-1-62708-229-7
... tracing cable were the only significant stresses acting on the pipe. SWEC estimated that the thermal stresses were tensile and above the threshold for SCC. Furthermore, it appeared impractical to exercise any further control over thermal stresses during future operation of the system. Residence Time...
Abstract
One inch diam Type 304 stainless steel piping was designed to carry containment atmosphere samples to an analyzer to monitor hydrogen and oxygen levels during operational and the design basis accident conditions that are postulated to occur in a boiling water reactor. Only one of six lines in the system had thru-wall cracks. Shallow incipient cracks were detected at the lowest elevations of one other line. The balance of the system had no signs of SCC attack. Chlorides and corrosion deposits in varying amounts were found throughout the system. The failure mechanism was transgranular, chloride, stress-corrosion cracking. Replacement decisions were based on the presence of SCC attack or heavy corrosion deposits indicative of extended exposure time to chloride-contaminated water. The existing uncracked pipe, about 75 percent of the piping in the system, was retained despite the presence of low level surface chlorides. Controls were implemented to insure that temperatures are kept below 150 deg F, or, walls of the pipe are moisture-free or the cumulative wetted period will never exceed 30 h.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0092148
EISBN: 978-1-62708-235-8
... Abstract Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized...
Abstract
Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized. The cylinder in which the spool fitted was made of 1117 steel, also gas carburized. Investigation (visual inspection, low magnification images, 400x images, metallographic exam, and hardness testing) supported the conclusion that momentary sliding contact between the spool and the cylinder wall caused unstable retained austenite in the failed cylinder to transform to martensite. The increase in volume resulted in sufficient size distortion to cause interference between the cylinder and the spool, seizing, and loss of flow control. The failed parts had been carburized in a process in which the carbon potential was too high, which resulted in a microstructure having excessive retained austenite after heat treatment. Recommendations included modifying the composition of the carburizing atmosphere to yield carburized parts that did not retain significant amounts of austenite when they were heat treated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046414
EISBN: 978-1-62708-234-1
... quantities of air were being drawn into the system when water in the supply tank dropped below a certain level. It was concluded that cavitation erosion (due to the uptake of air) caused metal removal and microstructural damage in the impellers. Recommendations included adding a water-level control...
Abstract
Two water pumps were taken out of service because of reduced output. Visual inspection revealed considerable material loss in both impellers, which were 25.4 cm (10 in.) in diam x 1.3 cm (0.5 in.) wide and made from a cast bronze alloy. Several similar water pumps operating under nearly identical conditions, drawing water from an open tank through a standpipe, had no observable failures. Etched micrographs 100x of samples taken from the impellers showed clean, pockmarked, severely eroded surfaces, characteristic of cavitation damage. Investigation also revealed that considerable quantities of air were being drawn into the system when water in the supply tank dropped below a certain level. It was concluded that cavitation erosion (due to the uptake of air) caused metal removal and microstructural damage in the impellers. Recommendations included adding a water-level control to the piping system and excluding air from the pump inlet.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001017
EISBN: 978-1-62708-219-8
... system pressure. Submerged arc welding Water pipelines Welded joints Welding defects 1020 UNS G10200 Joining-related failures The spiral-welded pipe in question was 10 in. in diameter and carried water under pressure. Numerous leaks were discovered in a section about 4 miles long...
Abstract
A 10-in. diam, spiral-welded AISI 1020 carbon steel pipe carrying water under pressure developed numerous leaks over a four mile section. The section was fabricated using submerged-arc welding from the outside surface. Each welded length of pipe had been subjected to a proof pressure approximately twice the specified design pressure and two-thirds the approximate yield point of the parent metal. No failures or leakage were observed during proof testing. Metallurgical examination corroborated visual checks, indicating a distinct lack of root penetration in the split areas. Splitting occurred as a result of inadequate root penetration. The most likely source of difficulty in the welding process was the linear speed. Probably, the failures would not have occurred in absence of the welding problem. Also, the pipe was inadequate for the specified design pressure, as well as the reported maximum system pressure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001699
EISBN: 978-1-62708-234-1
... system was not possible. The cause of the observed corrosion of steel piping was a lack of proper corrosion monitoring and control of the cooling water quality. Consistent, appropriate corrosion monitoring and control actions were recommended. This would help to prevent pitting corrosion damage...
Abstract
A shopping mall in South Carolina was originally constructed in 1988 and a second phase completed in 1989. The HVAC system inside the mall included an open, recirculating condenser water loop that served various fan coil units located within tenant spaces. The system had a recirculating capacity of about 44,000 gal (166,000 L) of water. It consisted primarily of steel pipes fitted with threaded connectors on the 2 in. (46 cm) pipes and bolted flanged couplings on the larger pipes. Seven years following the completion of the mall, corrosion problems were noted at the outer and inner surfaces of the pipe. Visual observations on the inner diametral surfaces revealed that the pipes were, in almost all cases, filled with corrosion products. A significant amount of base metal loss was documented in all of the samples. The cause of the observed corrosion was determined to be a lack of corrosion monitoring and poor water quality. Pipe replacement and a regular water testing program were recommended.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... Monitoring System for Composite Pressure Vessels , IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control , Vol 67 (No. 6 ), 2016 , p 864 – 873 10.1109/TUFFC.2016.2545716 12. Pullano S.A. , Critello C.D. , Bianco M.G. , Menniti M. , and Fiorillo A.S...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
1