1-16 of 16 Search Results for

continuum plasticity models

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006919
EISBN: 978-1-62708-395-9
... approach that incorporates both large-strain continuum mechanics and nonlinear material behavior, the effects of the large-strain material properties of plastics on puncture resistance can be investigated. Numerical simulations of puncture tests of polypropylene (PP) were performed with a finite-element...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... behavior of a plastic component. The relevant time scale of interest can be examined experimentally by conducting very long time scale creep experiments for constant load behavior or shorter time scale dynamic mechanical experiments in order to apply a time-dependent viscoelastic continuum mechanics model...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... crack initiation at surface pits from corrosion, cyclic loading in a corrosive environment ( stress-corrosion fatigue ) and elastic buckling. Elastic buckling may cause parts to contact, causing seizure of a rotating system, but it may also lead to plastic buckling and ultimately to fracture...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
... in the stressed specimen; it is considered as a failure mode in polymers. Therefore, unlike the crazing process, shearing is a plastic deformation mechanism with no creation of an internal surface. Shearing is characterized by a continuum flow, which is, in rheological terms, directly related...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... concepts. bending brittle fracture compression failure deformation ductile crack nucleation ductile fracture ductility fractography manufacturing imperfections metals microvoid coalescence notched specimen plastic flow root cause failure analysis single-crystal cleavage models specimen...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... these materials were too ductile for a defect to sufficiently constrain or limit plastic deformation. The result was Orowan’s modification of the Griffith model: σ critical = [ 2 E γρ π c a ] 1 / 2 where E is the elastic modulus, ρ is the crack-tip radius, γ...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... in a corrosive environment (stress-corrosion fatigue), and elastic buckling. Elastic buckling may cause parts to contact, causing seizure of a rotating system, but it may also lead to plastic buckling and ultimately to fracture. The purpose of this article is to introduce the subject of fractography...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... ). Cyclic stress-strain curves can be used to model the plastic deformation behavior of the polymer at the stress concentration or notch root. In addition, energy-based fatigue models use cyclic stress-strain curves and properties to calculate the work done under cyclic loading. Strain-versus-cycles...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... to theoretical models based on elastic-plastic fracture ( Ref 57 , 58 ), and rough agreement was found ( Ref 56 ). The variation of erosion as a function of impact angle for brittle materials is shown in Fig. 1 for glass. Equation 3 can be used to model this curve ( Ref 45 , 57 ). Examples of Erosive...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... Abstract This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... with increasing hardness of the surface material and with decreasing fracture toughness of the surface material. These exponents were compared to theoretical models based on elastic-plastic fracture ( Ref 63 , 64 ), and rough agreement was found ( Ref 62 ). The variation of erosion as a function of impact angle...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
.... A maximum normal stress criterion is sometimes used but again poorly predicts behavior when principal stresses are of opposite sign. Contemporary models to predict plastic deformation use the “flow” (i.e., yield) surface via the plastic potential equation. Because any linear model to predict flow (e.g...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... sign. Contemporary models to predict plastic deformation utilize the “flow” (i.e., yield) surface via the plastic potential equation. Because any linear model to predict flow (e.g., the Tresca criterion) is discontinuous in principal stress space, it cannot predict plastic strains for several loading...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
..., and plastic strain. If any one of these three is not present, fatigue cracks will not initiate and propagate. The cyclic stress and strain starts the crack; the tensile stress produces crack growth (propagation). Although compressive stress will not cause fatigue cracks to propagate, compression loads may do...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... or intergranular Ductile microprocess, microvoid coalescence Transmission electron microscopy (>10,000×) May have a large level of local plasticity High amount of plasticity globally RA, reduction of area Ductile Overload Failures Ductile overload failures are simply those that exhibit...