1-17 of 17 Search Results for

continuous unidirectional fiber reinforced polymers

Sort by
Image
Published: 15 May 2022
Fig. 9 Wear mechanisms of continuous unidirectional fiber-reinforced polymers. N, normal; P, parallel; AP, antiparallel. Adapted from Ref 11 More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
... Abstract This article reviews the abrasive and adhesive wear failure of several types of reinforced polymers, including particulate-reinforced polymers, short-fiber reinforced polymers (SFRP), continuous unidirectional fiber reinforced polymers (FRP), particulate-filled composites, mixed...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
... of Continuous Unidirectional Fiber-Reinforced Polymers Application of continuous fibers is the most commonly used technique to improve mechanical properties and tribological performance of many polymer composites. Unique mechanical properties can be obtained with the numerous types of fibers and production...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... level of crystallinity resulting from poor processing practices using this technique. Fiber reinforcement and mineral fillers are often incorporated into polymers to enhance some of their properties or to lower the cost. If a different grade of material with a lower or a higher level...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006929
EISBN: 978-1-62708-395-9
... This review would not be complete without a discussion of moisture-induced failure mechanisms in composite materials. The discussion focuses on glass and carbon fiber reinforcement, limited to composites reinforced with continuous, uniaxially oriented fibers. Damage mechanisms may take several forms...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
... or mechanical property as a function of temperature or time at a constant temperature or as a function of temperature. This dependency allows access to processing and performance information relating to resins and fiber-reinforced composites and can be used for quality assurance, process control, and new...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
...-rate capability of the test chamber. ASTM C666, developed for assessing the resistance of concrete freezing and thawing, is also used to assess the resistance of carbon-fiber-reinforced polymer and glass-fiber-reinforced polymer wrap systems used to repair (rehabilitate) corrosion-damaged concrete...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
... than that of the cable material. The experimenters succeeded in reducing the thermal contraction to match that of the metal without sacrificing the mechanical properties of the composite. Anisotropic Effects In the previous example, filler-matrix contraction is isotropic. In fiber-reinforced...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
.... In unidirectional testing, the sliding motion is only performed in one direction. These types of tests are most easily performed on a rotating stage, as the rotary stage is continuously rotating in one direction. In bidirectional sliding tests, the polymer pin slides over a region in one direction and then slides...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
... with low molecular weight and thus low viscosity, so they are amenable to dispensing, impregnating woven or nonwoven materials (such as glass- or carbon-fiber reinforcements), or processing into adhesives, films, coatings, or encapsulants. DSC of Uncured Formulations A simple DSC survey scan...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... to the polymer by the formation of cylindrical wear particles formed by rolling up of thin detached surface layers, which are extruded in a direction at right angles to the motion ( Ref 52 , 53 ). In an investigation of fretting wear of fiber-reinforced polymers (composites) in contact with an aluminum...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites. engineering components fatigue fracture fractography metals polymer-matrix composites polymers...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
... backing to increase the heat-flow rate. The third is to reinforce the polymer with a material that has high thermal conductivity, such as carbon fibers, graphite, and molybdenum disulfide (MoS 2 ). The third solution to the thermal problem also offers resistance to cold flow. For these purposes...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... “Prevention of Fretting Damage” in this article. This theory extends the possibility of fretting damage to materials other than metals. With the increased use of polymers, both simple and reinforced, in addition to ceramics, this is an area in which further examples of a somewhat different nature are likely...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
... of a metal-matrix composite (MMC) containing unidirectionally aligned alumina fibers in the matrix of an aluminum alloy. Figures 2(b) and 2(c) show a fracture profile from the tensile fracture surface of a low-alloy steel specimen. These fracture surfaces were electroplated with copper. As illustrated...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... the long-term behavior at given temperatures of plastic cages made of PA66, with glass-fiber reinforcement and heat stabilization, in different lubricating media. Fig. 8 Long-term behavior of plastic cage made of PA66-GF25 and glass fibers under varying temperatures and different oils. Source: Ref...