1-20 of 217 Search Results for

contact stress fatigue

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001807
EISBN: 978-1-62708-241-9
... was conducted to assess the role of friction in subsurface fatigue cracking in rolling-sliding contact applications. Based on the results of stress calculations and x-ray diffraction testing of steel samples, friction contributes to subsurface damage primary through its effect on the distribution of orthogonal...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
...Abstract Abstract Rolling-contact fatigue (RCF) is a surface damage process due to the repeated application of stresses when the surfaces of two bodies roll on each other. This article briefly describes the various surface cracks caused by manufacturing processing faults or blunt impact loads...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0091857
EISBN: 978-1-62708-222-8
...Abstract Abstract After the mixing machines were introduced into service, excessive assembly stresses and inappropriate detail design caused the premature failures of ice cream drink mixer blades shortly. The mixer blade is slightly deformed by the contact between the wavy washer at the bottom...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
...-life criterion gas porosity heat treatment inclusions infinite-life criterion internal bursts macropitting micropitting reversed bending rolling-contact fatigue rotational bending strengthening stress distribution subcase fatigue thermal fatigue torsional loading FATIGUE damage...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046155
EISBN: 978-1-62708-233-4
... was the primary cause of failure. Rubbing of the faying surfaces worked the interference area on the post until small tears developed. These small tears became stress-concentration points that nucleated fatigue cracks. Recommendations included rounding the edge of the box in the area of contact with the post...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048143
EISBN: 978-1-62708-235-8
... was concluded to be the reason of the fatigue failure. Rack plating or barrels with fixed button contacts at many points instead of dangler-type contacts were recommended to avoid hard spots. Cadmium plating Cylinders Electric arcs Pneumatic devices Spring steel Surface treatment related failures...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048169
EISBN: 978-1-62708-233-4
... contacting member by the radial wear marks on the convex surface. Beach marks indicating that fatigue fracture had been initiated at the convex surface of the washer and had propagated across to the concave surface were revealed by examination of the fractured surfaces of the washer. The cracks were revealed...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001293
EISBN: 978-1-62708-215-0
... effects of pitting at the radius and the high notch sensitivity of the material. The failure mechanism was hydrogen-assisted and was most likely a combination of stress-corrosion cracking and corrosion fatigue. Recommendations were to improve the inspection criteria of the component in service...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048020
EISBN: 978-1-62708-224-2
... the currently used smaller sheaves caused excessive bending stresses in the rope. The 18 x 7 rope was replaced by two 6 x 37 side-by-side counter-stranded steel-core ropes as a corrective measure. Radii Sheaves Fe-0.53C Fatigue fracture A 13-mm ( 1 2 -in.) diam 18 ├Ś 7 fiber-core improved...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001513
EISBN: 978-1-62708-232-7
..., the individual corrosion pits acted as stress raisers and initiated coarse grain spalling. Due to a bending moment on the rotating element, this in turn initiated bending fatigue normal to the longitudinal axis, which propagated through to the bore of the inner ring. Stain marks were visible in the bore...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001388
EISBN: 978-1-62708-215-0
... that was in contact with the first internal thread in the slewing ring. Examination of plastic carbon replicas indicated that failure was the result of fatigue action. Failure was attributed to overloading during service and increased stress concentration on a few bolts due to nonuniform separations around...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001030
EISBN: 978-1-62708-214-3
... that the cracks propagated by stress-corrosion cracking. The cause of cracking was twofold: use of interference-fit fasteners exposed to moisture intrusion from a marine environment and poor hole quality. Failure was intensified by dissimilar-metal contact in the presence of weak acidic electrolyte (dissociated...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001849
EISBN: 978-1-62708-241-9
...) that acts as stress-concentration point or from contact stress fatigue (Hertzian contact). Subcase-origin spalling is a type of subsurface spalling, where fatigue cracks initiated beneath the hardened case, spread laterally, then joined and caused cracks to emerge from the surface [ 7 ]. The presence...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
... ROLLING-CONTACT FATIGUE (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact (e.g., rolling-element bearings, railway tracks, gears). It is characterized by crack propagation caused by the near-surface alternating shear stress field, caused by rolling or rolling...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
...) Various types Method of testing for rolling contact fatigue of bearing steels Ref 26 (i) Multiple bearing testing apparatus Deep-groove ball bearing design; typically 3000 rpm; four bearings on a single center shaft; maximum contact stress, 2.9 GPa (420 ksi); accelerometers on the outer housing...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
... or spalling), rolling contact, thermal fatigue Impact Tooth bending, tooth shear, tooth chipping, case crushing, torsional shear Wear Abrasive, adhesive Stress rupture Internal, external Fatigue Fatigue failure results from cracking under repeated stresses much lower than the ultimate...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... is caused by the tractive forces in the contact causing the subsurface shear stresses to be at the surface. Experimental data indicate that a rolling-element bearing, considered as a composite whole, does not appear to possess a fatigue limit, such as is found with the materials from which...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
... and the microstructural feature of butterfly wings indicate the gear failure started by rolling-contact fatigue. Rolling-contact fatigue is the result of stresses very near the contact area exceeding the endurance limit of the material. The endurance limit is the minimum stress level required to initiate fatigue...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... produced by fretting or false Brinelling form stress raisers that, under subsequent conditions of rotation, may produce excessive noise and may cause premature spalling by rolling-contact fatigue. Figure 38 shows a portion of a shaft that served as the inner raceway for a drawn-cup needle-roller bearing...