Skip Nav Destination
Close Modal
Search Results for
computational modeling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 119 Search Results for
computational modeling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure of a Bucket-Wheel Stacker Reclaimer: Metallographic and Structural Analyses
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 2 Front ( a ) and rear ( b ) views of the BSR computational model developed for numerical structural analysis
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006772
EISBN: 978-1-62708-295-2
... than a large-scale accident. The approach presented is that the analysis and reconstruction is based on the physical evidence. The article provides a brief review of some general concepts on the use and limitations of advanced data acquisition tools and computer modeling. Legal implications...
Abstract
Failure analysis is generally defined as the investigation and analysis of parts or structures that have failed or appeared to have failed to perform their intended duty. Methods of field inspection and initial examination are also critical factors for both reconstruction analysts and materials failure analysts. This article focuses on the general methods and approaches from the perspective of a reconstruction analyst. It describes the elements of accident reconstruction, which have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The approach presented is that the analysis and reconstruction is based on the physical evidence. The article provides a brief review of some general concepts on the use and limitations of advanced data acquisition tools and computer modeling. Legal implications of destructive testing are discussed in detail.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001082
EISBN: 978-1-62708-214-3
... that the fracture originated near the blade-to-hub attachment in the area of the weld buildup. Specimens from four failed castings and from an impeller that had developed cracks prior to design modification were subjected to a complete analysis. A number of finite-element-method computer models were also...
Abstract
Several large-diameter type 304L stainless steel impeller/propeller blades in a circulating water pump failed after approximately 8 months of operation. The impeller was a single casting that had been modified with a fillet weld buildup at the blade root. Visual examination indicated that the fracture originated near the blade-to-hub attachment in the area of the weld buildup. Specimens from four failed castings and from an impeller that had developed cracks prior to design modification were subjected to a complete analysis. A number of finite-element-method computer models were also constructed. It was determined that the blades failed by fatigue that had been accelerated by stress-corrosion cracking. The mechanism of failure was flow-induced vibration, in which the vortex-shedding frequencies of the blades were attuned to the natural frequency of the blade/hub configuration. A number of solutions involving material selection and impeller redesign were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001777
EISBN: 978-1-62708-241-9
... Front ( a ) and rear ( b ) views of the BSR computational model developed for numerical structural analysis Fig. 3 Front region of BSR after the collapse Fig. 5 Ratios of maximum load to structural resistance are displayed in the gray boxes. The box outlined in red represents...
Abstract
The structural collapse of an iron-ore bucket-wheel stacker reclaimer at the beginning of operation was investigated by means of mechanical tests, microstructural characterization, and computational structural analysis. The mechanical failure was a consequence of a brittle fracture by cleavage. The crack followed the heat-affected zone of a welded joint connecting a rectangular hollow section member and a plate flange. The main factors contributing to failure were related with a combination of design-in and manufacturing-in factors like high load-strength ratio at the point of failure, local stress concentration as a result of geometry restrictions, and weld defects. This particular section was responsible for the load transfer between the front tie member and the boom extremity, and its failure was the main cause of the catastrophic failure of the equipment.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003523
EISBN: 978-1-62708-180-1
... Reconstruction Human Error Human error results obtained from a model are highly dependent on the input data. Use of a model (or computer program) that has been validated is not a substitute for human knowledge. Incorrect use of the program leads to results that are inaccurate. The user of the program...
Abstract
This article focuses on the general methods and approaches from the perspective of a reconstruction analyst and includes discussions relevant to materials failure analysts at the incident scene. The elements of accident reconstruction are described. These have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The article provides a brief review of some general concepts on the use of modeling which can be a very powerful tool for information pertaining to the reconstruction of an accident where the model can be a physical, mathematical, or logical representation of a physical system or process.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001817
EISBN: 978-1-62708-241-9
.... , Fedorko G. , Fabian M. , Kmet S. : Computer modeling of wire strands and ropes part I: theory and computer implementation . Adv. Eng. Softw. 42 , 305 – 315 ( 2011 ) 10.1016/j.advengsoft.2011.02.008 10. Stanova E. , Fedorko G. , Fabian M. , Kmet S...
Abstract
A wire hoisting rope on a drilling rig failed during a lift, after a few cycles of operation, causing extensive damage to support structures. The failure investigation that followed included mechanical property testing and chemical, metallurgical, and finite element analysis. The rope was made from multiple strands of 1095 steel wire. Its chemical composition, ferrite-pearlite structure, and high hardness indicate that the wire is a type of extra improved plow steel (EEIPS grade). The morphologies of the fracture surfaces suggest that the wires were subjected to tensile overloading. This was confirmed by finite element analysis, which also revealed compressive contact stresses between the wires and between the rope and sheave surface. Based on the results, it was concluded that a tensile overload, due to the combined effect of a sudden load and undersized sheave, is what ultimately caused the rope to fail.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... of finite-element modeling in conducting analyses of failed components. It is meant to highlight the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. However, the ongoing advances in computing power and speed have continued to reduce...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... in the article “Modeling and Accident Reconstruction” in this Volume, are also common applications. Solutions to these problems push desktop computers and workstations to their limits and are usually best solved on the fastest machines available and dedicated for these uses. Although dynamic impact analyses...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001071
EISBN: 978-1-62708-214-3
... Analytical To obtain a picture of the stress and deformation state of the valve at various locations, particularly in the flange-to-juncture area, a number of finite-element computer models were constructed. The finite-element computer simulation method was chosen in lieu of experimental simulation...
Abstract
A gray cast iron (ASTM 247 type A) gate valve in an oleum and sulfuric acid piping loop at a chemical process plant fractured catastrophically after approximately 10 years of service. The valve was a 150 mm (6 in.) bolted flange type rated to conform to ANSI B16.1 for service at 1034 kPa (150 psi) and 120 deg C (250 deg F) maximum in 93 to 99% sulfuric acid. The fracture originated at stress-corrosion cracks that occurred in a high-stress transition region at the valve body-to-flange juncture. The mechanical properties of the failed valve were below those of the manufacturer's cited specification, and the wall thickness through which the fracture occurred exceeded the minimum 9.5 mm (38 in.) thickness cited by the manufacturer The valve flange had been unbolted and rebolted to a maintenanced piping coil immediately prior to failure. It was recommended that the flange-to-valve body juncture be redesigned to reduce stress levels. A method of maintenance and inspection in concert with a criterion for life prediction for this and other valves and components in the system was also recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001797
EISBN: 978-1-62708-241-9
... To investigate the effect of a crack in the cam on the dynamic response of the follower, a case of numerical example is studied. Tow models are considered: the first deals with an eccentric follower, and the second deals with a centered follower. The cam profile can be computed using the mathematical...
Abstract
Cam crack failures are a common occurrence in cam-follower systems often caused by excessive loading or inappropriate operating conditions. An investigation into such a failure was conducted to assess the effect of cam crack damage on the dynamic behavior of cam-follower systems. It was shown both theoretically and experimentally that a cracked cam causes an overall reduction in stiffness. To further probe the effect, investigators derived an analytical formula expressing the time varying stiffness of a cam-follower system. They also succeeded in quantifying the relationship between crack size and stiffness, showing that cracks have an amplitude modulating effect.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
... Advantages and disadvantages of the response surface method (RSM) Advantages Easy to do. Can be done with numerical codes or testing Decouples probabilistic and deterministic analyses. Easy transfer of information between modelers Probabilistic analysis (using Monte Carlo sampling...
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006938
EISBN: 978-1-62708-395-9
... to be able to directly instrument the part in question during use of the assembly (which may enable collection of more direct functional data), it may be necessary to instrument other, more accessible, components of an assembly and to use physical models (such as computational tools) to map the measured data...
Abstract
A design may be improvable without presenting an unacceptable risk related to safety or performance. However, design-related failures can result from an oversight in performing one of the major design activities or from a failure to balance the competing demands inherent to part design. This article focuses on design-related failures in products utilizing polymeric materials, and reviews important considerations of the design envelope of plastic parts. The article provides a non-exhaustive list and descriptions of design tools that can support the design process and the prevention of design-related failures. It also discusses the most common causes of design-related failures of plastic parts. The article can assist in both failure analysis and in the prevention of failures in which design may be a contributing factor or a root cause.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001807
EISBN: 978-1-62708-241-9
... such as nonmetallic inclusions or the regions of higher shear stress. Published research articles dealing with the assessment of the failures associated with rolling contact fatigue damage in these components are quite voluminous, and different models have been proposed for the fatigue computation especially...
Abstract
Rolling contact fatigue is responsible for a large number of industrial equipment failures. It is also one of the main failure modes of components subjected to rolling contact loading such as bearings, cams, and gears. To better understand such failures, an investigation was conducted to assess the role of friction in subsurface fatigue cracking in rolling-sliding contact applications. Based on the results of stress calculations and x-ray diffraction testing of steel samples, friction contributes to subsurface damage primary through its effect on the distribution of orthogonal shear stress. Although friction influences other stress components, the effect is relatively insignificant by comparison. It is thus more appropriate to select orthogonal shear stress as the critical stress when assessing subsurface rolling contact fatigue in rolling-sliding systems.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006803
EISBN: 978-1-62708-329-4
..., are the question to be answered, the computational effort is even greater. Efficient gradient-based numerical algorithms for estimating probabilities of failure ( Ref 9 – 11 ) were developed through the 1980s, but all suffer from the problem of being restricted to computationally efficient models, or using...
Abstract
This article provides an outline of the issues to consider in performing a probabilistic life assessment. It begins with an historical background and introduces the most common methods. The article then describes those methods covering subjects such as the required random variable definitions, how uncertainty is quantified, and input for the associated random variables, as well as the characterization of the response uncertainty. Next, it focuses on specific and generic uncertainty propagation techniques: first- and second-order reliability methods, the response surface method, and the most frequently used simulation methods, standard Monte Carlo sampling, Latin hypercube sampling, and discrete probability distribution sampling. Further, the article discusses methods developed to analyze the results of probabilistic methods and covers the use of epistemic and aleatory sampling as well as several statistical techniques. Finally, it illustrates some of the techniques with application problems for which probabilistic analysis is an essential element.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... by numerical simulation, in which the three-dimensional flow field in a pipeline is solved using the Navier-Stokes equation together with a turbulence model. In this computation, the two-phase flow solver is preferable ( Ref 13 ), but the single-phase flow solver can provide a reasonable tool in consideration...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090114
EISBN: 978-1-62708-229-7
... Abstract The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling...
Abstract
The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling holes' surface was not coated. Investigation supported the conclusions that the cracking at the cooling holes was due to grain-boundary oxidation and nitridation at the cooling hole surface, embrittlement and loss of local ductility of the base alloy, temperature gradient from the airfoil surface to the cooling holes, which led to relatively high thermal stresses at the holes located at the thicker sections of the airfoil, and stress concentration of 2.5 at the cooling hole and the presence of relatively high total strain (an inelastic strain of 1.2%) at the cooling hole surface. Recommendations include applying the specially designed methods given in this case study to estimate the metal temperature and stresses in order to predict the life of turbine blades under similar operating conditions.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001021
EISBN: 978-1-62708-214-3
... growth curve was obtained by measuring the position of successive appearances on the fracture surface of the mark, produced by a unique peak load in the testing sequence. The resulting crack growth curve was used to calibrate a crack growth model. Calibration of Crack Growth Model It was necessary...
Abstract
Following the crash of a Mirage III-0 aircraft (apparently caused by engine failure), a small crack was detected in a bolt hole in the wing main spar (AU4SG aluminum alloy). Because this area was considered to be critical to aircraft safety and similar cracking was found in other spars in service, the Royal Australian Air Force requested that the crack growth rate during service be determined. The loading history of the aircraft was made available in the form of flight by-flight records of the counts from the vertical accelerometer sensors fitted to the airframe and a series of “overstress” events recorded during the life of the aircraft. The bolt hole was examined by eddy current testing, visual examination, high-powered light microscope, and scanning electron microscope. Simulation tests were also conducted. The use of simulation specimens permitted actual crack growth rate data to be determined for the configuration of interest.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001588
EISBN: 978-1-62708-221-1
... and fines was slightly higher than typical nominal member stresses were well below the steel yield strength analogous members were stressed 15% higher in the west truss than in the east Local joint stresses were computed by 3-D, elastic-plastic, finite element modeling. The lower chords were...
Abstract
On 23 Dec 1997, a portion of the main ore conveyor at a large mine collapsed onto a highway and shut down mine operations. The conveyor structure that collapsed was supported by a steel truss spanning 185 ft. Truss failure occurred just as the conveyor transport rate was increased to 8,260 tph. Under this total loading, which was only slightly above the regular operating condition, a poorly designed and fabricated transition joint in the west lower chord failed, thereby overloading other key structural members and causing the entire truss to collapse. Another contributing cause of the collapse was the transition joint welds, where the fracture originated. They were made with undersized fillet welds, 20% smaller than specified on the original fabrication drawing. Because of the poorly designed joint detail and the deficient welds, both of which concentrated stress and strain in the low ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... MANUFACTURING (AM) refers to a group of free-form fabrication technologies that incrementally build up a solid part by computer-controlled deposition of material from a digital solid model. The technology is an outgrowth and broadening of rapid prototyping methods that were developed in the 1980s to accelerate...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
1