Skip Nav Destination
Close Modal
Search Results for
cold working
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 290 Search Results for
cold working
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Effect of Prior Processing on the Performance of PH 13-8 Mo Stainless Steel Helicopter Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 3 Light etching cold work layer noted at the surface of a representative “A” component. Note the uniformity of this layer. Vilella's reagent. Magnification 500×
More
Image
in Effect of Prior Processing on the Performance of PH 13-8 Mo Stainless Steel Helicopter Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 4 Light etching cold work layer noted at the surface of a representative “C” component. This layer was nonuniform and discontinuous in areas. Vilella's reagent. Magnification 500×
More
Image
Published: 01 December 1993
Fig. 9 Corresponding etched view of Fig. 8 , illustrating highly cold-worked grains of mostly ferrite with some pearlite. 637times;.
More
Image
Published: 01 December 1993
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001581
EISBN: 978-1-62708-235-8
... Abstract A heavily worked 304 stainless steel wire basket recrystallized and distorted while in service at 650 deg C (1200 deg F). This case study demonstrates that heavily cold worked austenitic stainless steel components can experience large losses in creep strength, and potentially...
Abstract
A heavily worked 304 stainless steel wire basket recrystallized and distorted while in service at 650 deg C (1200 deg F). This case study demonstrates that heavily cold worked austenitic stainless steel components can experience large losses in creep strength, and potentially structural collapse, under elevated temperature service, even at temperatures more than 300 deg C (540 deg F) below the normal solution annealing temperature. The creep strength of the recrystallized 304/304L steel was more than 1000 times less than that achievable with solution annealed 304H. These observations are consistent with limitations (2000 Addendum to ASME Boiler and Pressure Vessel Code) on the use of cold worked austenitic stainless steels for elevated temperature service.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
... and that the fatigue cracking originated at corrosion pits. Hardness while below specification, still indicated that the screws were in the cold-worked condition and notch sensitive during fatigue loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended. Selected...
Abstract
Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant. The screws had been used to fasten a seven-hole narrow dynamic compression plate to a patient's spine. The broken screws and screws of the same vintage and source were examined using macrofractography, SEM fractography, and hardness testing. Fractography established that fracture was by fatigue and that the fatigue cracking originated at corrosion pits. Hardness while below specification, still indicated that the screws were in the cold-worked condition and notch sensitive during fatigue loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048413
EISBN: 978-1-62708-226-6
... on the surface during cyclic loading were observed. The material was showed by the deformation structure to be in the cold-worked condition and was termed to not be the cause of the implant failure. Cyclic loads Slip bands Surgical implants 316L UNS S31603 Fatigue fracture Figure 1(a) shows...
Abstract
A type 316L stainless steel angled plate failed. The fatigue fracture was found to have occurred at a plate hole. Symmetric cyclic bending forces were revealed by the fatigue damage at the fracture edge at the top surface of the plate. Fatigue striations and slip bands produced on the surface during cyclic loading were observed. The material was showed by the deformation structure to be in the cold-worked condition and was termed to not be the cause of the implant failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048399
EISBN: 978-1-62708-226-6
... boundaries were seen in one of the pins and hence the fracture was revealed to have occurred along the grain boundaries. The other pin made from cold-worked cobalt-chromium alloy was observed to have randomly lines of primary inclusions. Intermingled dimples and fatigue striations were exhibited...
Abstract
Two of four adjustable Moore pins, which had been used to stabilize a proximal femur fracture, were found to be broken and deformed at their threads. The pins were made from a cobalt-chromium alloy and were not in the same condition. Brittle precipitates in the grains and grain boundaries were seen in one of the pins and hence the fracture was revealed to have occurred along the grain boundaries. The other pin made from cold-worked cobalt-chromium alloy was observed to have randomly lines of primary inclusions. Intermingled dimples and fatigue striations were exhibited on the fracture surface of this pin. Thus, the effect of different conditions of cobalt-chromium alloys on failure behavior was demonstrated as a result of this study.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001075
EISBN: 978-1-62708-214-3
... austenitic stainless steel, showing that the cold-worked condition has much lower fatigue strength if samples are notched. Source: Adapted from Ref 3 . Fig. 9 Fatigue curves for notched and unnotched type 302 austenitic steel in the annealed condition. No notch sensitivity is apparent...
Abstract
Several type 316L stainless steel wires in an electrostatic precipitator at a paper plant fractured in an unexpectedly short time. Failed wires were examined using optical and scanning electron microscope, and hardness tests were conducted. Fractography clearly established that fracture was caused by fatigue originating at corrosion pits on the surface of the wire. It was recommended that higher-molybdenum steel in the annealed condition be used to combat pitting corrosion.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001345
EISBN: 978-1-62708-215-0
... deposits. Comparison of the microstructure and hardness of the swaged region and unswaged Grade TP 304 stainless steel tube metal indicated that the swaged section was not annealed to reduce the effects of cold working. The high hardness created during swaging increased the stainless steel's susceptibility...
Abstract
A cold-formed Grade TP 304 stainless steel swaged region of a reheater tube in service for about 8000 hours cracked because of sulfur-induced stress-corrosion cracking (SCC). Cracking initiated from the external surface and a high sulfur content was detected in the outer diameter and crack deposits. Comparison of the microstructure and hardness of the swaged region and unswaged Grade TP 304 stainless steel tube metal indicated that the swaged section was not annealed to reduce the effects of cold working. The high hardness created during swaging increased the stainless steel's susceptibility to sulfur-induced SCC. Because SCC requires water to be present, cracking most likely occurred during downtime or startups. To prevent future failures, the boiler should be kept dry during downtime to avoid formation of sulfur acids, and the swaged sections of the tubes should be heat treated after swaging to reduce or eliminate strain hardening of the metal.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0046242
EISBN: 978-1-62708-236-5
... teeth (found at visual inspection) was composed of the same material as the metal in the coupling. Beach marks and evidence of cold work, typical of fatigue failure, were found on the fracture surface. Chips remaining in the analysis cut were difficult to remove, indicating a strong magnetic field...
Abstract
An integral coupling and gear (Cr-Mo steel), used on a turbine-driven main boiler-feed pump, was removed from service after one year of operation because of excessive vibration. Spectrographic analysis and metallographic examination revealed the fact that gritty material in the gear teeth (found at visual inspection) was composed of the same material as the metal in the coupling. Beach marks and evidence of cold work, typical of fatigue failure, were found on the fracture surface. Chips remaining in the analysis cut were difficult to remove, indicating a strong magnetic field in the part. Evidence found supports the conclusions that failure of the coupling was by fatigue and that incomplete demagnetization of the coupling following magnetic-particle inspection caused retention of metal chips in the roots of the teeth. Improper lubrication caused gear teeth to overheat and spall, producing chips that eventually overstressed the gear, causing failure. Because the oil circulation system was not operating properly, metal chips were not removed from the coupling. Recommendations included checking the replacement coupling for residual magnetism and changing or filtering the pump oil to remove any debris.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001397
EISBN: 978-1-62708-235-8
... cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux...
Abstract
Banding wires of the rotor of an 1800 hp motor were renewed following replacement of the banding rings. After about six months of service, a breakdown occurred due to bursting of the banding wires in several places. The 0.064 in. diam wire was nonmagnetic and of the 18/8 Cr-Ni type of austenitic stainless steel. The fractures were short and partially crystalline, with no evidence of slowly developing cracks of the fatigue type. Microscopical examination of sections taken through the fractures showed the cracking to be of the multiple branching type. Because the material was in the heavily cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux during the soldering operation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046155
EISBN: 978-1-62708-233-4
... to the member. At failure, the part was receiving a second set of loads up to 103.6% of design load. Visual investigations showed rubbing and galling of the fillet. Microscopic and metallographic examination revealed beach marks on the fracture surface and evidence of cold work and secondary cracking...
Abstract
A structure had been undergoing fatigue testing for several months when a post-like member heat treated to a tensile strength of 1517 to 1655 MPa (220 to 240 ksi) ruptured. The fracture occurred in the fillet of the post that contacted the edge of a carry-through box bolted to the member. At failure, the part was receiving a second set of loads up to 103.6% of design load. Visual investigations showed rubbing and galling of the fillet. Microscopic and metallographic examination revealed beach marks on the fracture surface and evidence of cold work and secondary cracking in the rubbed and galled area. Electron fractography confirmed that cracking had initiated at a region of tearing and that the cracks had propagated by fatigue. Mechanical properties of all specimens exceeded the minimum values specified for the post. This evidence supports the conclusion that fatigue was the primary cause of failure. Rubbing of the faying surfaces worked the interference area on the post until small tears developed. These small tears became stress-concentration points that nucleated fatigue cracks. Recommendations included rounding the edge of the box in the area of contact with the post to ensure a tangency fit.
Image
in Fatigue Fracture of a Steel 8 × 19 Elevator Cable
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
. 25×. A indicates a nick in side of wire; B, a bright, smooth area containing fatigue marks. (d) Longitudinal section of 0.6-mm-diam wire etched in 2% nital showing necked region. 55×. (e) 2% nital-etched longitudinal section through 1.6-mm-diam wire showing cold working at A, flat-type fracture
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048289
EISBN: 978-1-62708-234-1
.... The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes...
Abstract
The center portions of two adjacent low-carbon steel boiler tubes (made to ASME SA-192 specifications) ruptured during a start-up period after seven months in service. It was indicated by reports that there had been sufficient water in the boiler two hours before start-up. The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes was disclosed by the wall thickness and OD of the tubing. The tubes were concluded to have failed due to rapid overheating.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
... Abstract This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool...
Abstract
This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006428
EISBN: 978-1-62708-217-4
... Abstract Four nose wheels fabricated from 2014-T6 aluminum alloy and cold worked at the flange were examined. Visual examination showed that the failure started in the tube well area on the wheel with serial number 31. The failure initiated in the flange fillet on wheels with serial numbers 67...
Abstract
Four nose wheels fabricated from 2014-T6 aluminum alloy and cold worked at the flange were examined. Visual examination showed that the failure started in the tube well area on the wheel with serial number 31. The failure initiated in the flange fillet on wheels with serial numbers 67, 217, and 250. Scanning electron microscopy (SEM) examination of the fractures showed that failure initiated by SCC or a corrosion pit on all failures examined. The failures then progressed by fatigue. Dye penetrant testing revealed no additional flaws on the wheels that had failed in the flange area. There was, however, one flaw area in the flange of the wheel that failed in the tube well. This flaw resembled a corrosion pit. It was concluded that failure of nose wheels 67, 217, and 250 was caused by cracking due to SCC or pitting. The failures progressed by fatigue. Because failure occurred in the same general area on all three wheels, these locations are suspect as being underdesigned. It was recommended that the nose wheel be redesigned and additional service data be accumulated to understand the contributing factors that resulted in wheel failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
... in cold-working and hot-working applications. Appreciable amounts of residual stress are generated by heat treatment and processing of tools steels, and faulty heat treatment is a cause or contributing factor in many tool steel failures (see also the article “Why Tools and Dies Fail,” in the section...
Abstract
This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps, unconsolidated interiors, and carbide segregation and poor carbide morphology are reviewed with illustrations.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001805
EISBN: 978-1-62708-241-9
... Fig. 14 SEM image of the fracture surface near the middle of the spindle Fig. 15 Metallographic image of the microstructure around the nonfractured corner of the subject failed spindle (opposite the fracture origin). The elongated grains indicate significant cold work Fig. 16...
Abstract
Several surgical tool failures were analyzed to understand why they occur and how to prevent them. The study included drills, catheters, and needles subjected to the rigors of biomedical applications such as corrosive environments, high stresses, sterilization, and improper cleaning procedures. Given the extreme conditions to which surgical tools can be exposed, and the potential for misuse, failures are inevitable and systematic methods for analyzing them are necessary to keep them in check.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0090639
EISBN: 978-1-62708-227-3
... to the cold-working coining process, and high residual stresses created by welding. Recommendations included the removal of the brittle, carbon-rich transformed martensite layer introduced by flame cutting and the application of a localized stress-relief heat treatment process. X-ray diffraction residual...
Abstract
Cracks initiating from the tip of the cloverleaf pattern in steel cargo tiedown sockets were observed by the builder following installation aboard several cargo vessels in various stages of construction. Testing of finite element models and measurements performed in the field on cargo ships with the cracking problem supported the conclusion that the failure was caused by overload. Additional testing showed that the overload failure and the transition from ductile to brittle fracture were facilitated by a combination of high brittleness due to flame cutting, increased hardness due to the cold-working coining process, and high residual stresses created by welding. Recommendations included the removal of the brittle, carbon-rich transformed martensite layer introduced by flame cutting and the application of a localized stress-relief heat treatment process. X-ray diffraction residual-stress measurements were then performed on heat treated tiedown sockets to verify the effectiveness of the localized heat treatment process applied.
1