1-20 of 41 Search Results for

coefficient of linear thermal expansion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001852
EISBN: 978-1-62708-241-9
... source of thermal loading for thermal shock simulation. For inner surface the convection coefficient h out = 10 W/m 2 °C is applied [ 8 ] while the convection coefficient h in = 306 W/m 2 °C is applied for loading (heating up to 240 °C) the outer surface and h in = 490 W/m 2 °C for unloading...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... loading or vibration) or thermal loading. Metal fatigue has been a recognized damage mechanism since the mid-1800s. Furthermore, fatigue damage has been responsible for many catastrophic failures of equipment, structures, machines, and components, and it will undoubtedly continue to be a major damage...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
... 16 Magnetic iron oxide 2.9 20 Silicate scale (porous) 0.09 0.6 Steel 24.5–44.7 170–310 (a) Source: Ref 1 . (b) Source Ref 2 Coefficients of thermal expansion for ferritic and austenitic steels Table 5 Coefficients of thermal expansion for ferritic and austenitic...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... to the thermal expansion of the specimen at the current temperature is computed through knowledge of the coefficient of thermal expansion, the temperature, and the gage length. It is then transformed into an equivalent electrical signal to which a signal corresponding to the total mechanical strain is added...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001771
EISBN: 978-1-62708-241-9
... ]. Carburized material in the inner wall of the radiant tube has a higher thermal expansion coefficient and tends to increase in volume and place stresses on the tube. These thermal stresses make the tube more susceptible to creep failure [ 3 ]. The deposition of the coke at high temperature is generally...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... of Joint Surfaces Example 9: Fracture of a Carbon Steel Pipe in a Cooling Tower Example 10: Intergranular Cracking in Heat-Exchanger Welds due to Hot Shortness Stiffening Example 12: Mismatch of Thermal Expansion Coefficients during Heat-Exchanger Operation Example 13: Dewpoint Corrosion due...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... ) as a function of crack size for crack types A, B, and C. Δ K thermal , cyclic stress intensity due to thermal stresses; Δ K p , cyclic stress intensity due to pressure stresses Fig. 17 Effect of hold time on the fatigue crack growth rate properties of 2.25Cr-1Mo cast steel. The 2 h hold time tests...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006803
EISBN: 978-1-62708-329-4
... in the section “Correlated Random Variables” in this article. It measures the strength of the linear relationship between two variables. Usually in traditional sensitivity analysis, the larger (in absolute value) this coefficient is, the more important the variable. For regression coefficients, a linear...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
... be dissipated properly, and hence flash temperatures at sliding contacts remain high. Their poor thermal stability also makes them more vulnerable due to loss of mechanical strength with an increase in the surface temperature. The thermal expansion coefficients of polymers are ten times greater than those...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001845
EISBN: 978-1-62708-241-9
... of elasticity 1.30 × 10 5 MPa Fracture load ≥9.0 kN Thermal conductivity 250 W/m-K Sliding load 1.5 kN Coefficient of thermal expansion (20–300 °C) 1.7 × 10 –5 K Tightening torque 28 N m Fig. 1 General view of the steady clamps analyzed: ( a ) views in different directions; ( b...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... temperature or time Composition, thermal stability, evolved gas analysis Thermomechanical analysis (TMA) Dimensional changes over temperature Coefficient of thermal expansion, material transitions, molded-in stress, chemical compatibility Dynamic mechanical analysis (DMA) Elastic modulus, viscous...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... Hole Expansion Process for Stress Analysis and Evaluation of Fatigue Properties , OSR J. Mech. Civil Eng. (IOSR-JMCE) , ISSN: 2278-1684, 2013 , p 21 – 27 The residual stresses present in a component can arise in almost every step of processing ( Ref 1 ) and, in many cases, can play a key role...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... the wear evolution of a sintered steel displaying a significant fluctuation of the friction coefficient, depending on the loading condition. Adapted from Ref 42 Fig. 14 Illustration and chart of the quantification of wear rate under gross slip using the accumulated friction energy parameter...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... expansion produce tensile stresses near the center. The formation of such cracks depends on both the section size and the thermal conductivity of the material. Large section sizes and poor thermal conductivity promote steep thermal gradients and favor crack formation. Laps are surface irregularities...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... of thermal expansion, and high-temperature capability are properties also suited to rolling-element materials. Silicon nitride has been found to have a good combination of properties suitable for these applications. Research over the past three decades on structure, quality control, and manufacturing...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... oxidation rate versus temperature. LTHC, low-temperature hot corrosion; HTHC, high-temperature hot corrosion. Courtesy of U.S. Navy Fig. 26 Schematic of cross section of a thermal barrier coating (TBC). Calcium-magnesium-alumino-silicate (CMAS) deposits on the TBC surface, which upon melting...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... of the fastener exceeds that of the joined material, then a predictable amount of clamping force will be lost as temperature increases. Conversely, if the coefficient of expansion of the joined material is greater, then the bolt may be stressed beyond its yield or even fracture strength, or cyclic thermal...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented...