Skip Nav Destination
Close Modal
Search Results for
coefficient of friction
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 103 Search Results for
coefficient of friction
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 17 Specific wear rate and friction coefficient of unidirectional composites (see Table 4 ) in three orientations ( P , 1.5 N/mm 2 ; V , 0.83 m/s; distance slid, 16 km).
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 28 Effect of ion implantation on the coefficient of friction in fretting of IMI 550 titanium alloy at 500 °C (930 °F)
More
Image
Published: 01 January 2002
Fig. 32 Plot of the coefficient of friction versus the number of fretting cycles for three selected materials tested on steel. PTFE, polytetrafluoroethylene
More
Image
Published: 15 January 2021
Fig. 37 Plot of coefficient of friction versus number of fretting cycles for three selected materials tested on steel. PTFE, polytetrafluoroethylene. Adapted from Ref 139
More
Image
Published: 15 January 2021
Fig. 41 Comparison of the stabilized friction coefficient (5000 cycles test duration) of a cylinder-on-flat smooth surface as a function of the applied measured displacement amplitude between a dry and a grease-lubricated contact. Adapted from Ref 160
More
Image
Published: 30 August 2021
Fig. 5 Relationship of coefficient of friction to Sommerfeld number, η N / p . EHL, elastohydrodynamic lubrication
More
Image
in Analysis of Critical Stress for Subsurface Rolling Contact Fatigue Damage Assessment Under Roll/Slide Contact
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in Analysis of Critical Stress for Subsurface Rolling Contact Fatigue Damage Assessment Under Roll/Slide Contact
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 Influences of friction coefficients on subsurface principle shear stress: (a) Influence of friction coefficients on maximum principle shear stress along y -axis; and (b) Influence of friction coefficients on maximum principle shear stress along with y / a
More
Image
in Analysis of Critical Stress for Subsurface Rolling Contact Fatigue Damage Assessment Under Roll/Slide Contact
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 4 Influences of friction coefficients on subsurface octahedral shear stress: ( a ) Influence of friction coefficients on octahedral shear stress along y -axis: and ( b ) Influence of friction coefficients on octahedral shear stress along with y / a
More
Image
in Analysis of Critical Stress for Subsurface Rolling Contact Fatigue Damage Assessment Under Roll/Slide Contact
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in Analysis of Critical Stress for Subsurface Rolling Contact Fatigue Damage Assessment Under Roll/Slide Contact
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 6 Results of rolling contact fatigue test: ( a ) varies of friction coefficient with the test time,; and ( b ) FWHM along the radii of test samples)
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... Abstract Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001807
EISBN: 978-1-62708-241-9
... by friction coefficient to some extent. The cracks mainly initiate on the subsurface when the coefficient of friction is less than 0.3, while the cracks initiate mainly on surface if it is larger than 0.3. In present article, the distributions of the shear stresses used as critical stresses...
Abstract
Rolling contact fatigue is responsible for a large number of industrial equipment failures. It is also one of the main failure modes of components subjected to rolling contact loading such as bearings, cams, and gears. To better understand such failures, an investigation was conducted to assess the role of friction in subsurface fatigue cracking in rolling-sliding contact applications. Based on the results of stress calculations and x-ray diffraction testing of steel samples, friction contributes to subsurface damage primary through its effect on the distribution of orthogonal shear stress. Although friction influences other stress components, the effect is relatively insignificant by comparison. It is thus more appropriate to select orthogonal shear stress as the critical stress when assessing subsurface rolling contact fatigue in rolling-sliding systems.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
... is proportional to the load pressing these two surfaces together ( Ref 3 ). The constant of proportionality can be defined as the friction coefficient, μ: (Eq 1) μ = F f F N where F f is the force of friction and F N is the normal force, or normal load ( Fig. 1 ). Fig. 1 Diagram...
Abstract
Tribology is the study of contacting materials in relative motion and more specifically the study of friction, wear, and lubrication. This article discusses the classification and the mechanisms of friction, wear, and lubrication of polymers. It describes the tribological applications of polymers and the tribometers and instrumentation used to measure the tribological properties of polymers. The article discusses the processes involved in calculating the wear rate of polymers and the methods of characterization of the sliding interface. It provides information on the pressure and velocity limit of polymer composites and polymer testing best practices.
Image
Published: 15 January 2021
Fig. 13 Comparison between (a) Archard approach and (b) friction energy wear approach to quantify the wear evolution of a sintered steel displaying a significant fluctuation of the friction coefficient, depending on the loading condition. Adapted from Ref 42
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... and a transfer film is deposited onto the counterface. The molecular orientation in PTFE is responsible for the drop in the friction coefficient. Although the friction coefficient is low for PTFE, wear is generally high because of the thermal softening of the interface zone and easy removal of the material...
Abstract
This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics," and "semicrystalline thermoplastics." The article also discusses the effects of environment and lubricant on the wear failures of polymers. It presents a case study on considering nylon as a tribological material and failure examples, explaining wear resistance of polyurethane elastomeric coatings and failure of an acetal gear wheel.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... the coefficient of friction). The interface is subjected to cyclic contact stressing, inducing crack nucleation (and crack propagation if an external fatigue loading is applied). The fretting loop is very closed, which means nearly no friction dissipation, so that wear volume induced by debris formation...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
... lubrication at contacting solid surfaces. Polymers are ideal materials for use in tribosystems due to their excellent corrosion resistance, tolerance to small misalignments, shock-absorbing capability, and low friction coefficient ( Ref 1 , 2 ). The tribological behavior of polymers is different from...
Abstract
Reinforced polymers (RPs) are widely used in structural, industrial, automotive, and engineering applications due to their ecofriendly nature and the potential to manipulate their properties. This article addresses the technical synthesis of RPs, referring to their tribological behavior, to provide insights into the contribution and interaction of influential parameters on the wear behavior of polymers. It provides a brief discussion on the effects of significant parameters on RP tribology. The article describes abrasive and adhesive wear and provides a theoretical synthesis of the literature regarding the wear mechanisms of RPs. It also describes the synthesis of abrasive wear failure of different types of RPs and highlights the contribution of these influential parameters. The article addresses the synthesis of adhesive wear failure of different types of RPs.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... orientation in PTFE is responsible for the drop in friction coefficient. Although the friction coefficient is low, for PTFE wear is generally high because of the thermal softening of the interface zone and easy removal of the material. This is one of the reasons why PTFE has not been used very widely...
Abstract
Plastics or polymers are used in a variety of engineering and nonengineering applications where they are subjected to surface damage and wear. This article discusses the classification of polymer wear mechanisms based on the methodologies of defining the types of wear. The first classification is based on the two-term model that divides wear mechanisms into interfacial and bulk or cohesive. The second is based on the perceived wear mechanism. The third classification is specific to polymers and draws the distinction based on mechanical properties of polymers. In this classification, wear study is separated as elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The article describes the effects of environment and lubricant on the wear failures of polymers. It presents a case study on nylon as a tribological material. The article explains the wear failure of an antifriction bearing, a nylon driving gear, and a polyoxymethylene gear wheel.
1