1-14 of 14 Search Results for

cobalt-chromium beads

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001133
EISBN: 978-1-62708-214-3
... Chromium 27.9 27.0–30.0 Molybdenum 6.11 5.0–7.0 Nickel 0.06 1.0 (max) Iron 0.24 0.75 (max) Carbon 0.245 0.35 (max) Silicon 0.68 1.0 (max) Manganes 0.32 1.0 (max) Cobalt … bal Specimen Selection Quality control includes tensile testing of the bead-to-cast...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... consists of a metal femoral component, generally made from a cobalt-chromium or titanium alloy; a polymeric wear surface made of ultrahigh molecular weight polyethylene (UHMWPE, ASTM F648); and a metal tibial component to which the polyethylene is attached. The femoral component articulates against...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001536
EISBN: 978-1-62708-229-7
... process sensitizes the steel, i.e., it causes the precipitation of chromium carbides along the grain boundaries, with a consequent depletion of dissolved chromium in these regions and a resulting loss of corrosion resistance. In addition, the weld thermal treatment produces significant residual tensile...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... noble metals and alloys therefore tend to be minimized. Cobalt-Base Alloys Cobalt-base alloys, most of which are chromium bearing, are resistant to galvanic corrosion because of their noble position in the galvanic series. However, in environments in which their passive film is not stable...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... therefore tend to be minimized. Cobalt-Base Alloys Cobalt-base alloys, most of which are chromium bearing, are resistant to galvanic corrosion because of their noble position in the galvanic series. However, in environments in which their passive film is not stable, they occupy a more active position...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... The gradual change of the carbide microstructure under prolonged heating may lead to a reduction of creep-strength properties of as much as 25% or more of carbon steel, carbon-molybdenum steel, and certain of the low-alloy chromium-molybdenum steels ( Ref 7 ). The effect of temperature in changing the form...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... steel is made in a furnace normally used to make high-alloy steels. The refractory lining of the furnace may impart sufficient residual chromium and other alloying elements to a heat of low-carbon steel that problems occur when components made from that heat are joined using standard welding procedures...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
..., and the fracture appeared to be related to shrinkage porosity. Chemical analysis of the core showed that the composition corresponded to 3310 steel except for low manganese, slightly high chromium, and lower silicon than would normally be expected in a cast steel. The hardness range of the core conforms...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... and generally occurs in lighter casting sections. Some of the causes of inverse chill are sulfur content not balanced by manganese; too low of a degree of nucleation for the section, arising from high melting and pouring temperatures; and the presence of tellurium, chromium, and other severe carbide stabilizers...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... alloys, iron-chromium alloys, and brasses, either type of cracking can occur, depending on the metal-environment combination. Features of stress-corrosion cracked surfaces revealed by macroscopic and microscopic examination are discussed in the sections “Macroscopic Examination” and “Microscopic...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... of the steel furnace may impart enough residual chromium and other alloying elements to a heat of low-carbon steel that problems occur when components made from that heat are joined using standard welding procedures. Therefore, complete control of composition is of the utmost importance when welding...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
...). These grades (especially AISI 440B, X46Cr17 or WN 1.4034, and X47Cr14 or WN 1.3541) have only moderate resistance to corrosion (mainly aqueous environment without corrosive media) due to their low chromium contain (~12.5 to 14.5 wt%). The AISI 440C (X108CrMo17 or WN 1.3543) exhibits better behavior...