1-20 of 61 Search Results for

cobalt-base alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048423
EISBN: 978-1-62708-226-6
... cobalt-chromium-molybdenum alloy. (a) Radiograph of total hip prosthesis. Circular wire marks acetabulum component made from plastics. Arrows (from top to bottom) indicate the area where the prosthesis stem is loosening at the collar, a stem fracture, and a fracture of bone cement at the end of the stem...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046966
EISBN: 978-1-62708-229-7
... Abstract A turbine vane made of cast cobalt-base alloy AMS 5382 (Stellite 31; composition: Co-25.5Cr-10.5Ni-7.5W) was returned from service after an undetermined number of service hours because of crack indications on the airfoil sections. This alloy is cast by the precision investment method...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001281
EISBN: 978-1-62708-215-0
... Abstract The first-stage nozzles of a high-pressure turbine section of an industrial gas turbine exhibited leading and trailing-edge deterioration. The nozzles were made of X-40, a cobalt-base alloy, and were aluminide coated. Failure analysis determined that the deterioration was the result...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
.... and Shores D. A. , “Mechanism of Na2SO4 Induced Corrosion at 600–900 °C” , J. Electrochem. Soc. , Vol. 127 , p. 2202 ( 1980 ). 10.1149/1.2129375 16. Stringer J. and Whittle D. P. , “Hot Corrosion of Cobalt-Based Alloys” , Deposition and Corrosion in Gas Turbines , Wiley , New...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
... of their high strength at high temperature. Among popular alloys are cast alloys, e.g., GTD-111 and GTD-222. The turbine vanes as stationary hot parts are not subjected to centrifugal loads and can be made of high-strength-cast cobalt-based superalloys. Cobalt-based superalloys such as FSX 414 show good...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001829
EISBN: 978-1-62708-241-9
... spalling microstructural analysis operating time ECY768 (cobalt-base superalloy) Co-Ni-Cr-Al-Y (cobalt-nickel-chromium-aluminum-yttrium alloy) ...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
...-chromium-molybdenum alloy: ASTM F 75-82, ISO 5832/IV (1978) Wrought cobalt-base alloys: ASTM F 90-82, ASTM F 562-84, ISO/DIS 5832/6, ASTM F 563-83, ISO/DIS 5832/8 Certain applications—for example, in the skull—involve use of tantalum and niobium, both of which have high corrosion resistance...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... 1150 2100 4 405, 410 705 1300 4 416 675 1245 4 420 620 1150 4 430 815 1500 4 440 760 1400 4 442 980 1795 4 446 1095 2005 4 Superalloys N-155 iron-base superalloy 1040 1900 1 S-816 cobalt-base superalloy 980 1800 1...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... failure is used. For example, a creep failure of a cobalt-base alloy turbine vane is shown in Fig. 1 . The bowing is the result of a reduction in creep strength at the higher temperatures from overheating. Fig. 1 Creep damage (bowing) of a cobalt-base alloy turbine vane from overheating...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... that are far more erosion resistant than the standard constructional materials described earlier are well known. The best of these, exemplified by cobalt-base alloys and NiTi alloys, are characterized by energy-absorbing deformation modes: fine twinning, stress- or strain-induced phase transformation...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
..., 347 925 1695 6 330 1150 2100 6 405, 410 705 1300 6 416 675 1245 6 420 620 1150 6 430 815 1500 6 440 760 1400 6 442 980 1795 6 446 1095 2005 6 Superalloys N-155 iron-base superalloy 1040 1905 3 S-816 cobalt-base alloy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001610
EISBN: 978-1-62708-222-8
... cobalt-chrome-molybdenum alloy ISO 5832-4 Wrought cobalt-chrome-tungsten- nickel alloy ISO 5832-5 Wrought cobalt-nickel-chrome- molybdenum alloy ISO 5832-6 Wrought cobalt-chrome-nickel- molybdenum-iron alloy ISO 5832-7 Wrought cobalt-nickel-chrome- molybdenum-tungsten-iron alloy ISO 5832...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... creep failure is used. For example, a creep failure of a cobalt-base alloy turbine vane is shown in Fig. 1 . The bowing is the result of a reduction in creep strength at the higher temperatures from overheating. Fig. 1 Creep damage (bowing) of a cobalt-base alloy turbine vane from overheating...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
...- and cobalt-base alloys and precious metals (gold, platinum, and palladium). These filler materials, when used with improved atmospheres such as ultradry hydrogen and vacuum and equipment such as vacuum furnaces with gas-quenching capabilities, have raised the upper-temperature brazing limit to above 1650 °C...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0091757
EISBN: 978-1-62708-232-7
... resistance to sulfidation of the alloy. Inconel 617 has lower nickel content and higher cobalt and molybdenum content. Recommendations On-site testing was suggested, and test coupons of various alloys were installed before fabricating another kiln. The suggested alloys were RA85H, 800HT, HR-120...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... alloys are used for the relatively cool components, such as those in the fan and low-pressure compressor sections. Nickel-base, iron-nickel, and iron-base heat-resisting alloys are used for “warm” parts, such as shafts, turbine disks, high-pressure compressor disks, and cases. Nickel-base and cobalt-base...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
.../acetone Blue color Identify cobalt-base alloys Copper Dithizone Purple color Sort copper-bearing stainless steels Iron Potassium ferricyanide Blue precipitate Sort low-iron high-temperature alloys Lead Sulfuric acid White precipitate Sort leaded bronze Molybdenum Potassium...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001367
EISBN: 978-1-62708-215-0
... and graph of a crack fracture surface. Base metal elements revealed that the impeller material was an AISI 4300 alloy steel. Element wt% at.% Silicon 0.27 0.53 Chromium 1.10 1.18 Manganese 0.88 0.89 Iron 96.40 96.12 Nickel 1.35 1.28 Scanning Electron...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
...-called stage II propagation. Notches, sharp corners, or preexisting cracks can also eliminate detectable stage I propagation in many metals. Similarly, some alloys (such as certain nickel base superalloys and cobalt base alloys) can display very extensive regions of propagation on specific...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... initiation in such alloys, growth immediately occurs by so-called stage II propagation. Notches, sharp corners, or preexisting cracks can also eliminate detectable stage I propagation in many metals. In contrast, some alloys (such as certain nickel-base superalloys and cobalt-base alloys) can display very...