Skip Nav Destination
Close Modal
Search Results for
chemicals
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 836 Search Results for
chemicals
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... important attributes are listed for preliminary insight into the strengths and limitations of these techniques for chemical characterization of surfaces. The article describes the basic theory behind each of the different techniques, the types of data produced from each, and some typical applications. Also...
Abstract
This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important attributes are listed for preliminary insight into the strengths and limitations of these techniques for chemical characterization of surfaces. The article describes the basic theory behind each of the different techniques, the types of data produced from each, and some typical applications. Also discussed are the different types of samples that can be analyzed and the special sample-handling procedures that must be implemented when preparing to do failure analysis using these surface-sensitive techniques. Data obtained from different material defects are presented for each of the techniques. The examples presented highlight the typical data sets and strengths of each technique.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
...Abstract Abstract This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each...
Abstract
This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each of these techniques, the types of data produced from each, and some typical applications. The article explains the strengths of AES, XPS, and TOF-SIMS based on data obtained from the surface of a slightly corroded stainless steel sheet.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090454
EISBN: 978-1-62708-220-4
...Abstract Abstract A chemical storage vessel failed while in service. The failure occurred as cracking through the vessel wall, resulting in leakage of the fluid. The tank had been molded from a high-density polyethylene (HDPE) resin. The material held within the vessel was an aromatic...
Abstract
A chemical storage vessel failed while in service. The failure occurred as cracking through the vessel wall, resulting in leakage of the fluid. The tank had been molded from a high-density polyethylene (HDPE) resin. The material held within the vessel was an aromatic hydrocarbon-based solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses. The source of the stress was thought to be molded-in residual stresses associated with uneven shrinkage. This was suggested by obvious distortion evident on cutting the vessel. Relatively high specific gravity and the elevated heat of fusion indicated that the material had a high level of crystallinity. In general, increased levels of crystallinity result in higher levels of molded-in stress and the corresponding warpage. The significant reduction in the modulus of the HDPE material, which accompanied the saturation of the resin with the aromatic hydrocarbon-based solvent, substantially decreased the creep resistance of the material and accelerated the failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... specimen handling wavelength-dispersive spectrometry CHEMICAL ANALYSIS is often a useful tool for failure analysis. There are two main categories of chemical analysis that are often used by failure analysts: Bulk composition evaluation: often performed in order to determine whether...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090427
EISBN: 978-1-62708-222-8
... with glyceride derivatives of fats and oils. This supported the conclusion that the grips failed via brittle fracture associated with severe chemical attack of the ABS resin. A significant level of glyceride derivatives of fatty acids, known to degrade ABS resins, was found on the part surface. Chemical...
Abstract
A set of plastic grips from an electric consumer product failed while in service. The grips had been injection molded from a general-purpose grade of ABS resin. The parts had cracked while in use after apparent embrittlement of the material. Investigation (visual inspection, SEM imaging, and micro-FTIR in the ATR mode) showed that the spectrum representing the grip surface contained absorption bands associated with ABS as well as additional bands of significant intensity. A spectral subtraction removed the bands associated with the ABS resin resulting in a very good match with glyceride derivatives of fats and oils. This supported the conclusion that the grips failed via brittle fracture associated with severe chemical attack of the ABS resin. A significant level of glyceride derivatives of fatty acids, known to degrade ABS resins, was found on the part surface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001713
EISBN: 978-1-62708-220-4
... on evaluations of the blender to determine if material or mechanical failures were the cause of the accident. The results indicate that the mixing vessel was metallurgically sound and did not contribute to the initiation of the failure. However, the vessel was not designed for mixing chemicals that must...
Abstract
On 21 April 1995, the contents of a large blender (6 cu m) reacted and caused an explosion that killed and injured a number of workers at a plant in Lodi, NJ. A mixture of sodium hydrosulfite and aluminum powder was being mixed at the time of the accident. This report focuses on evaluations of the blender to determine if material or mechanical failures were the cause of the accident. The results indicate that the mixing vessel was metallurgically sound and did not contribute to the initiation of the failure. However, the vessel was not designed for mixing chemicals that must be isolated from water and excessive heat. Water leaking into the vessel through a graphite seal may have initiated the reactions that caused the accident.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
...Abstract Abstract Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
... Metallography Chemical Analysis/Identification Mechanical Properties The exterior surfaces of the cross-tee showed no evidence of significant corrosion beyond slight atmospheric rusting. Visual examination of the exterior surfaces of the welds showed clearly that the weld at the location...
Abstract
A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service. The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused failure at this location because the weld was abnormally thin as fabricated. Thus, failure resulted from inadequate deposition of weld metal and subsequent wall thinning from internal corrosion. It was recommended that the cross-tee be replaced with a like component, with more careful attention to weld quality.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001034
EISBN: 978-1-62708-214-3
...Abstract Abstract The interior surface of a type 316L stainless steel trailer barrel used to haul various chemicals showed evidence of severe pitting after less than 1 year of service. Two sections were cut from the barrel and microscopically examined. Metallographic sections were also prepared...
Abstract
The interior surface of a type 316L stainless steel trailer barrel used to haul various chemicals showed evidence of severe pitting after less than 1 year of service. Two sections were cut from the barrel and microscopically examined. Metallographic sections were also prepared at the weld areas and away from the weld zones. Terraced, near-surface pits with subsurface caverns and a high level of sulfur in the pit residue, both indicative of bacteria-induced corrosion, were found. No evidence of weld defects or defective material was present. Testing of the water used at the wash station and implementation of bacteria control measures (a special drying process after washing and use of a sanitizing rinse) were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.9781627082204
EISBN: 978-1-62708-220-4
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001039
EISBN: 978-1-62708-214-3
...Abstract Abstract The 4140 steel steering spindle on a tricycle agricultural field chemical applicator failed, causing the loss of the front wheel and overturn of the vehicle. The spindle was a solid 120 mm (4.75 in.) diam forging. It had been machined to 115 mm (4.5 in.) in diameter to fit...
Abstract
The 4140 steel steering spindle on a tricycle agricultural field chemical applicator failed, causing the loss of the front wheel and overturn of the vehicle. The spindle was a solid 120 mm (4.75 in.) diam forging. It had been machined to 115 mm (4.5 in.) in diameter to fit tightly inside a collar at one point and to 90 mm (3.5 in.) for attachment to the steering mechanism at another. Visual examination showed that the spindle fractured at the fillet welds that attached it to the collar. Macrofractography and metallography revealed that the failure initiated at the root of a weld that bridged a wide gap. The most probable cause of failure was improper preheat during welding.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001318
EISBN: 978-1-62708-215-0
... Induced Embrittlement , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 861 – 867 10.31399/asm.hb.v11.a0003554 Applications Circumstances Leading to Failure Selection of Samples Surface Examination Metallography Chemical Analysis...
Abstract
Failure of three C22000 commercial bronze rupture discs was caused by mercury embrittlement. The discs were part of flammable gas cylinder safety devices designed to fail in a ductile mode when cylinders experience higher than design pressures. The subject discs failed prematurely below design pressure in a brittle manner. Fractographic examination using SEM indicated that failure occurred intergranularly from the cylinder side. EDS analysis indicated the presence of mercury on the fracture surface and mercury was also detected using scanning auger microprobe (SAM) analysis. The mercury was accidentally introduced into the cylinders during a gas-blending operation through a contaminated blending manifold. Replacement of the contaminated manifold was recommended along with discontinued use of mercury manometers, the original source of mercury contamination.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001328
EISBN: 978-1-62708-215-0
... discovered to be deformed, as shown in Fig. 2 . Fig. 1 Schematic of pigtail connection Fig. 2 Close-up of actual pigtail showing deformation due to applied moment Nondestructive Evaluation Metallography Chemical Analysis/Identification Metallurgical changes can occur...
Abstract
During 5.7 years of service, dye penetrant inspection of Inconel 800H pigtail connections regularly showed cracks at weld toes. Weld repairs were not able to prevent reoccurrence but often aggravated the condition. Samples containing small, but detectable, reducer-to-pigtail cracks showed intergranular cracks originating at weld toes and filled with oxidation product, which precluded determination of the cracking mechanism. All weldments exhibited high degrees of secondary precipitates, with original fabrication welds exhibiting higher apparent levels than repair welds. SEM/EDS analysis showed base metal grain boundary precipitates to be primarily chromium carbides, but some titanium carbides were also observed. Failure was believed to result from the synergism of thermally driven tube distortion, which resulted in over-stress, and from the intergranular oxidation products and intergranular carbides which contributed to cracking. It was recommended that stresses be reduced and /or that materials and components be changed. Refinements in welding procedures and implementation of preweld/postweld heat treatments were recommended also.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... of the aluminum equipment that was in operation prior to the installation of the mercury-removal bed. Butt welds Chemical processing equipment Ethylene Hydrocarbons Mercury Repair welding 5083-O UNS A95083 Intergranular corrosion Liquid metal induced embrittlement Background Visual...
Abstract
The failure mode of through-wall cracking of a butt weld in a 5083-O aluminum alloy piping system in an ethylene plant was identified as mercury liquid metal embrittlement. As a result of this finding, 226 of the more than 400 butt welds in the system were ultrasonically inspected for cracking. One additional weld was found that had been degraded by mercury. A welding team experienced in repairing mercury contaminated piping was recruited to make the repairs. Corrective action included the installation of a sulfur-impregnated charcoal mercury-removal bed and replacement of the aluminum equipment that was in operation prior to the installation of the mercury-removal bed.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001341
EISBN: 978-1-62708-215-0
... of the bend and propagated in a brittle, intergranular fashion. Chemical analysis revealed that lead contamination was a significant factor in the failure and phosphorus may have contributed. The localized nature of the cracks and minimum secondary cracking suggested a distinct, synergistic effect of applied...
Abstract
An SB407 alloy 800H tube failed at a 100 deg bend shortly after startup of a new steam superheater. Three bends failed and one bend remote from the failure area was examined. Visual examination showed that the fracture started on the outside surface along the inside radius of the bend and propagated in a brittle, intergranular fashion. Chemical analysis revealed that lead contamination was a significant factor in the failure and phosphorus may have contributed. The localized nature of the cracks and minimum secondary cracking suggested a distinct, synergistic effect of applied tensile stress with the contamination. Stress analysis found that stress alone was not enough to cause failure; however the operating stresses in the 100 deg bends were higher than at most other locations in the superheater Reduced creep ductility may be another possible cause of failure. Remedial actions included reducing the tube temperature, replacing the Schedule 40 100 deg bends with Schedule 80 pipe, and solution annealing the pipe after bending.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001354
EISBN: 978-1-62708-215-0
... Examination Metallography Chemical Analysis/Identification Mechanical Properties Most Probable Cause Remedial Action The disk was removed from the section anchoring the first and second rows of blades in the turbine. The turbine was designed to be powered by 3800 kPa (550 psig) steam...
Abstract
An A-470 steel rotor disk was removed from the high-pressure portion of a steam turbine-powered compressor after nondestructive testing revealed cracks in the shoulder of the disk during a scheduled outage. Samples containing cracks were examined using various methods. Multiple cracks, primarily intergranular were found on the inlet and outlet faces along prior-austenite grain boundaries. The cracks initiated at the surface and propagated inward. Multiple crack branching was observed. Many of the cracks were filled with iron oxide. X-ray photoelectron spectroscopy indicated the presence of sodium on crack surfaces, which is indicative of NaOH-induced stress-corrosion cracking. Failure was attributed to superheater problems that resulted in caustic carryover from the boiler. Two options for disk repair, installing a shrink-fit disk or applying weld buildup, were recommended. Weld repair was chosen, and the rotor was returned to service; it has performed for more than 1 year without further incident.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001358
EISBN: 978-1-62708-215-0
... on inner shroud after removal of seal box Nondestructive Evaluation Surface Examination Metallography Chemical Analysis/Identification Mechanical Properties Simulation Tests Use of an austenitic filler metal in the welding of type 403 stainless steel is not uncommon, especially...
Abstract
Several compressor diaphragms from five gas turbines cracked after a short time in service. The vanes were constructed of type 403 stainless steel, and welding was performed using type 309L austenitic stainless steel filler metal. The fractures originated in the weld heat-affected zones of inner and outer shrouds. A complete metallurgical analysis was conducted to determine the cause of failure. It was concluded that the diaphragms had failed by fatigue. Analysis suggests that the welds contained high residual stresses and had not been properly stress relieved. Improper welding techniques may have also contributed to the failures. Use of proper welding techniques, including appropriate prewelding and postwelding heat treatments, was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001107
EISBN: 978-1-62708-214-3
... of the waste heat boiler to determine the extent of metal damage in other areas by measuring the degree of ferromagnetism, (2) replacement of metal determined to be magnetic, and (3) closer monitoring of temperatures in the region of the reformer furnace outlet. Boilers Chemical processing equipment...
Abstract
A 150 mm (6 in.) diam, 1.6 mm (0.065 in.) thick alloy 800 1iner from an internal bypass line in a hydrogen reformer was removed from a waste heat boiler because of severe metal loss. Visual and metallographic examinations of the liner indicated severe metal wastage on the inner surface, along with sooty residue. Patterns similar to those associated with erosion/corrosion damage were observed. Microstructural examination of wasted areas revealed a bulk matrix composed of massive carbides, indicating that gross carburization and metal dusting had occurred. X-ray diffraction analysis showed that the carbides were primarily chromium based (Cr 23 C 7 and Cr 7 C 3 ). The sooty substance was identified as graphite. Wasted areas were ferromagnetic and the degree of ferromagnetism was directly related to the degree of wastage. Three actions were recommended: (1) inspection of the waste heat boiler to determine the extent of metal damage in other areas by measuring the degree of ferromagnetism, (2) replacement of metal determined to be magnetic, and (3) closer monitoring of temperatures in the region of the reformer furnace outlet.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001730
EISBN: 978-1-62708-229-7
Abstract
A shaft can crack twice before it fails. A Detroit electric plant had this experience with one in a coal pulverizer. Because the first crack rewelded partially (by friction) in service, the pulverizer remained serviceable until the second crack developed.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001373
EISBN: 978-1-62708-215-0
.... Applications Circumstances Leading to Failure Specimen Selection Surface Examination Metallography Chemical Analysis One of the chrome-plated brass valves failed by dezincification; this resulted in inherently weak threads on the pressure relief fitting port. The other valve failed by shear...
Abstract
Two new chrome-plated CDA 377 brass valves intended for inert gas service failed on initial installation. After a pickling operation to clean the metal, the outer surfaces of the valves had been flashed with copper and then plated with nickel and chromium for aesthetic purposes. One of the valves failed by dezincification. The porous copper matrix could not sustain the clamping loads imposed by tightening the pressure relief fitting. The second valve failed by shear overload of the pressure relief fitting. Overload was facilitated by a reduction of cross-sectional area caused by intergranular attack and slight dezincification of the inner bore surface of the fitting. Dezincification and intergranular attack were attributed to excessive exposure to nonoxidizing acids in the pickling bath.